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Objective and Aims (as articulated in the 2017 Project Funding Agreement, and subsequent 

2020 Deed of Variation): 

 

(1) The Objective of the Activity is to provide the Department with a model that will identify 

poorly performing pathology laboratories across Australia. The model will be developed 

through the use of established statistical modelling strategies that combine National 

Association of Testing Authorities (NATA) data plus … quality assurance [programme] 

(RCPAQAP) data to explore the challenges to achieve consistent, high-quality pathology 

laboratory performance, and (2) The Aim of the Activity is to proactively detect and resolve 

poor laboratory performance using sophisticated computational knowledge-discovery 

methods (primarily machine learning), and relationships between two distinct sets of 

performance metrics (NATA and RCPAQAP). 

 

For noting - The above-stated Aims/Objectives are not concerned with identifying individual 

laboratories, but to develop system-level models to allow the early detection of quality-control 

challenges. By extension, to assist in the remediation of quality control issues as soon as 

possible, to ensure the best quality pathology results and decision-making by scientists and 

pathologists for the clinicians they support via laboratory diagnosis and monitoring. 
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The data provided for this research project were obtained directly from the Pathology 

networks studied, with no involvement from the RCPAQAP or NATA. 

Executive Summary: 

As summarised in the original and updated funding agreements, all stated aims/objectives, 

as represented by the B.3 indicators/targets, were addressed and achieved. The primary 

thrust of the research investigations dealt with NATA and RCPAQAP results obtained from a 

State government pathology network (State Pathology Laboratory Network - SPLN), and a 

private laboratory with state-wide coverage (Private Pathology Laboratory Network). The 

objective of integrating NATA and RCPAQAP results was achieved, with the subsequent aim 

of providing a model as a result of NATA/RCPAQAP integration. Of note however, was the 

very different NATA profiles for SPLN versus the PPLN, which made direct comparisons 

difficult, but lead to a useful results nonetheless. As found via an earlier pilot study, bias 

calculated from GGT and serum creatinine RCPAQAP results remained as leading predictors 

of NATA performance for a government (state) pathology network. The reason for the 

enhanced utility of GGT (RCPAQAP) bias as a leading predictor of NATA was determined by 

subsequent investigations of distribution around the specific RCPAQAP target value. 

 A range of issues, problems or delays were encountered, including, as mentioned 

above, disruption due to the bushfire crisis of late 2019 - early 2020. In terms of meeting 

agreed milestones, the delay in receiving point-of-care-testing (PoCT) data had the most 

significant impact on milestone compliance (hence the March - April 2020 Deed of Variation). 

The PoCT data received covered three geographical zones under SPLN administration; 

therefore, while differences could be examined in this context, the proposed analysis of 

different states and pathology providers could not be fulfilled. Also, the ambiguities in the raw 

data received, in general, resulted in the data-cleaning phase of the project proceeding 

slower than anticipated. Careful data cleaning and organisation is critical to the project 

success, since faulty data sets lead to wrong conclusions. 

 The key findings from this research investigation were in the development of simple 

decision rubrics from integrated NATA and RCPAQAP results to support assessments of 

laboratory quality. The benefit to stakeholders is the provision of relatively simple tools, 

based on common laboratory RCPAQAP markers with which to assess laboratory 

performance. The distribution of marker (bias) results over the sixteen-point RCPAQAP 

cycle, and decision boundaries discovered by machine learning, are the bases of the 

decision support strategies presented. 

 

In spite of these unforeseen challenges, the aims were mostly addressed (Appendix A), with 

results and conclusions delivered in line with the original research proposal. As alluded to 

above, some variations to the original proposed aims may be found due to unforeseen issues 
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with data scope or access, but in general, results were forthcoming that addressed the need 

for an integrated NATA - RCPAQAP model to efficiently detect quality control challenges. 

 

Glossary: 

Alb - Serum albumin 

ALT - Alanine Aminotransferase 

AST - Aspartate Aminotransferase 

Bicarb. - Sodium bi-carbonate 

Category – Class * 

CV% - Coefficient of Variation percent 

Creat. - Serum creatinine 

GGT - Gamma () Glutamyl-Transferase 

LD - Lactate dehydrogenase 

LFT – Liver Function Test 

NATA - National Association of Testing Authorities 

PLS - Partial Least Squares 

PPLN - Private Pathology Laboratory Network 

pCO2 - Blood gas CO2 analysis 

PoCT - Point-of-Care Testing 

SPLN - State Pathology Laboratory Network 

RDW – Red cell Distribution Width 

RF(A) – Random Forest (Analysis) 

RCPAQAP - Royal College of Pathologists of 

Australasia Quality Assurance Programme 

SD - Standard Deviation 

SVM – Support Vector Machine 

Trees - single decision trees (recursive partitioning) 

→ Forests) 

TBil - Total serum bilirubin (DBil - Direct bilirubin) 

TnI - Troponin I 

TP, FN - (True Positive, False Negative, TN, FP) 

UEC - Urea, Creatinine, Electrolytes 

* Class/Category are used interchangeably 

 

Period of activity: 

Total Project (November 2017 - June 2020); Final Report (July/August 2019 – July 2020). 

 

Scope of Work: 

This document will report on the aims, subsequent research activities and results, as stated 

in the original Funding Agreement (2017), and updated Deed of Variation agreement 

finalised during March - April 2020 (project extension due to bushfire impacts and the late 

receipt of PoCT data for analysis).  

 

As stated in the above agreements, the following activities were conducted and project aims 

achieved: 

1. Compile and clean NATA/RCPAQAP datasets - (a) Liaise with a State Pathology 

Laboratory Network (SPLN), a Private Pathology Laboratory Network (PPLN), and the 

Royal College of Pathologists of Australasia Quality Assurance Programs Pty Ltd 

(RCPAQAP), to access past NATA audit and external quality assurance/quality 

assurance programme (EQA/RCPAQAP) assay performance data. Thereafter - (b) 

Extract raw data, assess and correct for missing values, censored and incomplete data 

and undertake initial statistical analyses; and (c) Ensure modelling of these data allows 

for overlapping markers of poor pathology laboratory performance and the development 

of performance metrics that will predict poor laboratory performance earlier than possible 

using separate quality control schemes. 
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2. Modelling with decision tree + SVM pattern recognition algorithms - (a) Undertake 

intensive pattern recognition analyses on the combined NATA + RCPAQAP (clean) data 

set; and (b) Produce data pattern “rules” reflected by pathology predictor variables used 

for quality evaluation, in response to quality outcome variables. Apply to data, and also 

troponin turn-around-time (TAT) studies. 

3. Application of results (from 1 and 2 above) to Point-of-Care tests (PoCT) - (a) Repeat 

steps above for the PoCT data set obtained via the SPLN; (b) Evaluate the PoCT 

network and determine if there are associations between NATA assessment and 

RCPAQAP data (Creatinine, Troponin, and INR); (c) Using a small subset of the PoCT 

sites, use the NPAAC - PoCT Guideline as an assessment guide to assess whether 

there are associations between failed Clauses, QC or EQA and performance; (d) Obtain 

NATA and RCPAQAP data from another network (PPLN) and validate the findings using 

a different geographical patient base for validation; and, (e) Develop ‘rules’ for the 

prediction of PoCT quality, as conducted via identical statistics and machine learning 

methods. 

4. “How the results of this Activity will be used to benefit pathology stakeholders” - for 

commentary on this aspect, please see the report Discussion. 

 

Context: Linked RCPAQAP results and NATA reports were obtained from a large, state-wide 

private pathology enterprise (PPLN), and a state-wide government pathology network 

(SPLN). PoCT data were only received for three regions under the state-wide government 

network. The profile of NATA reports, as reflected by the number and variety of major and 

minor conditions, and/or observations, were different for the private and state examples. 

 

Changes, limitations experienced during the QUPP funding period: 

During the project period, unexpected challenges were encountered that impacted originally 

proposed timelines and project details. Examples include - 

 The retirement of Dr Gus Koerbin from his position in the time leading up to the project 

start date. This impacted data access in the short-to-medium term; 

 As described above, and linked to the point above, access to point-of-care testing (PoCT) 

data was slow, and not delivered for analysis until early 2020; 

 Also, in terms of PoCT, data were only provided by SPLN (for three regions), so a wider 

quality performance comparison with other networks was not possible at this time; 

 Impact of bushfires and associated evacuations on work flow over early 2020 (workflows 

from March onwards were also impacted by the COVID-19 lockdown). 
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(1) Introduction 

In Australia, pathology laboratory performance is evaluated via conformance to ISO 15189 

and National Pathology Accreditation Advisory Council (NPAAC) standards, and external 

quality assurance (EQA) processes (also known as “RCPAQAP” - Quality Assurance 

Programme), established to ensure ongoing excellence in pathology laboratory quality. The 

assessment of ongoing ISO 15189 and NPAAC standards is the responsibility of the National 

Association of Testing Authorities (NATA) (1), which uses regular laboratory audits and the 

reporting of non-conformances (e.g. Conditions - immediate action required) to ensure the 

maintenance of the highest analytical, management and technical standards behind the 

provision of pathology results, which are recognised as a central pillar to modern medical 

practice. The Royal College of Pathologists of Australasia (RCPA) QAP process is an 

essential arm of the maintenance of these necessary high standards, via the direct 

assessment of NATA-accredited laboratories capacity to accurately measure the range of 

routine and special test markers from patient samples. These two distinct processes are 

connected in the pursuit of excellence for pathology performance, but traditionally have not 

been integrated into a single model of quality assessment, or unified system of monitoring 

and advice. 

 The report authors have previously completed a QUPP pilot study into the potential of 

enhancing the overall quality endeavour via the integration of NATA and RCPAQAP (EQA) 

results and data (2), which was subsequently published in the Journal of Laboratory and 

Precision Medicine (3). The impetus for this research enquiry into quality control in pathology 

testing was emphasised further by the accompanying systematic scoping review, conducted 

as part of the wider investigation, which found no sophisticated methods in the existing peer-

reviewed literature for the monitoring and remediation of quality issues in laboratories beyond 

standard “root cause analysis” (2, 3). Recognising this gap, data modelling via machine 

learning algorithms and supporting statistical tests were conducted on NATA and RCPAQAP 

data provided by a participating state-wide, government pathology network. 

 This project report extends the data modelling component of the original pilot study. 

With the aim of validating pilot study results, data from another State Pathology Laboratory 

Network (SPLN) RCPAQAP - NATA cycle were explored, as well as RCPAQAP - NATA 

results obtained from a private pathology network (PPLN) with state-wide coverage. With this 

opportunity, similar analyses were also conducted on Point-of-Care Testing (PoCT) 

RCPAQAP - NATA results, provided by the participating SPLN. 

 

(2) Methods 

The analyses, observations and conclusions presented by this report were the result of a 

variety of statistical methods of data interrogation, as well as predictive modelling via 

machine learning (ML) algorithms. The ML methods applied (and described in detail below) 
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were two recursive partitioning algorithms (decision trees and random forest), as well as 

support vector machines (SVM). All methods have analytical advantages and disadvantages, 

but when used in tandem provide an excellent predictive modelling platform, from the 

broader patterns of interaction between response and explanatory variables, to the specific 

decision thresholds discovered that support outcome prediction. 

(a) Statistical Methods 

Standard statistical analyses, namely the calculation of sample mean, median, standard 

deviation, histograms and other plots, the Runs test, One-Sample Wilcoxon Signed Rank 

Test and ANCOVA, were performed using SPSS for Windows (version 26) (4). 

 

A p-value of 0.05 was applied to decide statistical significance. 

 

(b) Calculation of Bias for RCPAQAP Markers 

The RCPAQAP results were calculated from individual bias scores across the 16 time points 

of the RCPAQAP cycle (11 time points for PoCT RCPAQAP), thus representing how close 

the laboratories were able to achieve the RCPAQAP target value for the specific test time 

point (1 - 16), which was determined from the RCPAQAP mean calculated from the national 

data comprising 450 - 600 laboratories (RCPAQAP target values for PoCT were calculated 

from 140 - 170 laboratories). 

 The bias results were presented as the raw result, and not a percentage, where a 

bias outcome of zero (0) was a perfect RCPAQAP result (namely, has achieved the exact 

RCPAQAP target value), or can be represented as a negative (-) or positive (+) result, 

indicating a laboratory RCPAQAP result below or above the RCPAQAP target value, 

respectively, with the degree of variation from zero on a continuous scale, indicating the 

extent of variation from the target value. 

 

 The equation to calculate bias from RCPAQAP UEC, LFT (etc) results is - 

 

(Lab result - RCPAQAP Target value) 
RCPAQAP Target value 

 
For Example - 

 
ALT Result (RCPAQAP Time point 5, Labs 1 and 15) 

 
(55 - 51) 

51 
= (+) 0.078 Bias (Lab 1) 

 
(47 - 51)  

51 

= (-) 0.078 Bias (Lab 15) 
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It is essential to note that unless stated otherwise, all RCPAQAP data entered into machine 

learning models, statistical analyses and data plots, were first transformed into relative bias 

values, as achieved via the above equation. 

 

(c) Machine Learning - Integration of NATA and RCPAQAP results 

The R Statistical programming language was used for all machine learning analyses, and 

ultimate construction of NATA - RCPAQAP prediction models (5). The R package e1071 was 

used for support vector machine (SVM) modelling (6, 7). For recursive partitioning, two 

algorithms were employed; (i) the rpart package for single decision trees (8), and (ii) the 

randomForest (RF) package for analyses of the same name (9). 

In tandem with the above R packages, the caret package was used extensively for the tuning 

and inspection of machine learning models, particularly for random forests (10). This 

package supported the tuning of RF models by identifying optimal “mtry” parameters (i.e. 

number of trees per decision node), and by receiver operating characteristics (ROC). As well 

as model fitting, caret assessed model accuracy and robustness. For RF, the kappa and 

McNemar’s statistics were generated to allow the assessment of model efficiency. 

 The models developed for all laboratories and PoCT involved the prediction of NATA 

Class (category) by multiple RCPAQAP bias results. Therefore, the NATA Class acted in the 

model as the response to be predicted by RCPAQAP bias (explanatory or predictor) 

variables. 

 

(d) Attribution of NATA Results into Response Classes 

The results of NATA inspections utilised in this study were presented as written feedback 

accompanied by recommendation classes - namely a (i) Condition, (ii) Minor (condition) 

and/or (iii) an Observation. Throughout the report these are often represented a simply “C”, 

“M” or “O”. A NATA Condition is a recommendation that requires immediate attention and 

resolution before the following inspection. If not addressed adequately, Conditions can lead 

to laboratory closure or other sanction. Minor (conditions) require attention, which if not 

addressed, risk becoming a full Condition during the following inspection. 

 Both C and M reports/recommendations are taken as the primary responses of 

interest for modelling, since they represent technical and/or management problems at the 

laboratories involved, and hence may reflect in the RCPAQAP results as difficulties in 

obtaining accuracy (i.e. achieving the RCPAQAP designated target value, or within an 

acceptable error range). By broad definition, the NATA - RCPAQAP (Bias) modelling is 

attempting to link systemic operational problems detected by NATA with RCPAQAP 

performance. The value here is the potential that RCPAQAP metrics/models may assist to 
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identify system-level issues in advance, resulting in fewer C and M reports on subsequent 

NATA inspection. 

 As well as C and M reports, NATA also records “Observations” (O), which are not 

necessarily critical or require action, but are provided by assessors to assist the laboratory in 

maintaining standards. O reports were not used if sufficient C and M reports were available. 

 

(i) Private Pathology Laboratory Network - NATA Classes for the PPLN were “Yes” or “No”. 

As reported previously (Performance Report 3; Table 1) around 50% of the PPLN 

laboratories in the sample did not record C, M or O reports, leading to the designation of 

these laboratories to the No NATA Class. Alternatively, the presence of a C, M or O resulted 

in the inclusion of the responsible laboratory in the Yes NATA Class. 

 

(ii) State Pathology Laboratory Network - As reported in the pilot study from 2107 (2), and 

found again for this project (Table 2), SPLN laboratories attracted many C and M reports, 

and hundreds of Observations. Therefore, to create NATA Classes for RCPAQAP 

interrogation, only C and M were counted. The NATA Classes for SPLN, therefore, were 

“High” or “Low”. Whether a laboratory was classified as high or low was decided by the 

incidence of C or M reports as above or below the median calculated for all laboratories. The 

low NATA Class contained laboratories with zero reports, but these were a minority. 

 

(iii) Point of Care Testing - NATA and RCPAQAP results were available for three SPLN 

regions, with the NATA reports generalised to all of the laboratories within the specific region. 

On inspection, there were not large differences in the number of NATA C, M or O reports 

between the three regions, so while analysis could be performed, the subsequent results 

were not indicative of a link to NATA performance. 

 

(3) Results - Project Activity Reports 

(a) NATA Profiles 

(i) Private Pathology Laboratory Network (PPLN) – The PPLN sample comprised 22 B 

laboratories, with only 2 G laboratories available for investigation. Therefore, a comparison of 

B and G laboratories was not possible due to inadequate G laboratory sample size. 

 Table 1 summarises the profile of NATA results for the sample of 23 - 24 private 

laboratories included in this study, supported by Appendix B (and first reported in the 

January 2019 Performance Report). A total of forty-eight (48) Observations (O), Minor 

conditions (M) and major Conditions (C) were reported, and of these, only 2 were major 

conditions requiring urgent attention. Unlike the SPLN NATA results (below), observations 

(O) were included in the NATA profile to ensure sufficient scope to develop response 

categories for analysis against RCPAQAP results. Observations were generally advice of a 
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non-urgent nature, so could not be assumed to concern a laboratory breach (see Appendix C 

for the range of NATA comments and advice received). 

 The general modelling of PPLN NATA-RCPAQAP results, therefore, used total NATA 

CMO counts to develop response classes (absence or presence of NATA reports), although 

more sophisticated (and accurate) SVM models were ultimately developed from counting 

only the number of M reports (see Results). 

 The NATA feedback and further details on these results can be found in Appendices 

B and C of this report, as well as referring to Performance Report 3 from January 2019. 

TABLE 1 – Results from NATA inspections conducted on the Private Pathology Lab Network (PPLN) 
included in this study. Only laboratories with a minimum of 1 O, M or C are included. Full NATA details 
for the PPLN inspected are available in Appendix B to this report. Laboratories were not divided into B 
or G categories. (Presented in Performance Report 3 - January 2019). 

 

NATA Details Conditions (C) Minor Report (M) Observation (O) 

Number recorded 2 36 10 

Associated NATA 

Clause(s) 

4.13, 5.1 4.1, 4.10, 4.13, 4.14, 4.3 

5.1, 5.2, 5.3, 5.4, 5.5, 

5.6, 5.8 

4.1, 4.10 

5.1, 5.2, 5.3, 5.4, 5.5, 

5.6 

 

Example 

Comments from 

NATA Reports 

 

 Trauma pack fate – 
(no documents) 

 Supervising scientist 
working hours 

 Relief … supervising 
scientist 

 Hardcopy documents 
in laboratory 

 Obsolete versions of 
documentation 

 1-2 weekly, 
maintenance 
incomplete 

 Continuing education 
program all staff 

 Drift fail not 
investigated/actioned 

 

 Improve root 
cause/corrective 

action 

 Competence not 
accessed on day 

 Collection staff - 
incorrect draw order 

 

NATA – National Authority of Testing Authorities See Appendix B for full NATA details. 

 

(ii) State Pathology Laboratory Network (SPLN) - The NATA results recorded had many 

differences in comparison to the PPLN (Table 2: Appendix D). These were: (1) a larger 

sample size (41 laboratories in total); (2) a sufficient number of laboratories to allow 

comparisons between B and G designated laboratories; and (3) around 10-fold more total 

CMO reports, with O reports greater than 100, and C and M reports sufficient to develop 

models without O data (that were too abundant and diverse to capture meaningful trends. 
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Further investigations may consider deeper analyses of Observation feedback as a guide to 

performance, but in this instance, O reports generally were not critical). 

 Given these differences in NATA results, deeper analyses were possible for SPLN 

(Table 2). The mean (�̅�) Conditions were 3.38 per laboratory in the sample investigated, with 

Minor Reports significantly higher (p < 0.001) at 6.26 per laboratory. The separation of C and 

M reports according to the laboratory category, B or G, revealed differences due to these 

designated laboratory roles within the SPLN system. For C reports, a significantly higher 

mean was found for G laboratories compared to B laboratories (p < 0.005), with a 

significantly higher mean also found for M reports associated with G laboratories (p < 0.005) 

(Table 2). 

 With the B laboratories supervised by larger G laboratories, it is likely that the 

significantly higher number of C and M NATA reports reflect the comparative size of the 

laboratories, and range of testing conducted. The likelihood is also that the responses to 

NATA reporting from the G laboratories was transferred to the B laboratories that they 

supervise. The relationship between G and B laboratories in the context of NATA, RCPAQAP 

and laboratory quality modelling requires a larger dataset, and a dedicated focus. 

 

TABLE 2 – Results from NATA inspections conducted on the SPLN laboratories (n = 41) included in 
this study. The total cohort comprised B (n = 31) and G (n = 10) category laboratories (Appendix D). 
(Presented in Performance Report 4 - July/August 2019) 
 

NATA Details Conditions (C) Minor Report (M) Observation (O) 

Number recorded 128 244 > 100 

Mean (�̅�) Reports/ 

Laboratory 

3.28 6.26 * NA 

Mean (�̅�) Reports 

B and G 

Laboratories 

B G B G NA 

2.4 5.4 * 5.0 8.8 * NA 

Associated NATA 

Clause(s) 

4.2, 4.9, 5.1, 

5.4, 5.5. 

4.1, 4.3, 5.1, 5.3, 

5.5, 5.6. 

Across most categories 

– not critical reports 

 

Example 

Comments from 

NATA Reports 

 Quality management 
across all 

departments 
 Investigation + 
corrective action – 

root cause 
 IATA training 
required + other 

training inadequacies 
 AS/NZS 4308 

adherence 
(tampering) 

 Records maintenance 

 Documents and 
worksheets missing, 

not updated 

 Corrective action 
requests (CARs) – 

timeframes 

 POC training manual 

 Validation – non 
standard methods 

 

Extensive comments 

and positive or helpful 

feedback across most 

NPAAC Clauses 
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NATA Details Conditions (C) Minor Report (M) Observation (O) 

 Procedures for 
Westgard Rules and 

evaluation 
 TGA notifications 

(IVD framework) 

 Staff engagement with 
RCPAQAP material 

NATA – National Authority of Testing Authorities SPLN – State Pathology Laboratory Network 

* Significantly increased mean for M versus C NATA reports, and the same reports for B versus G laboratories 

(independent T-test, 2-tails, equal variance. Significance p < 0.001 for all comparisons). 

(iii) PPLN versus SPLN (Conclusion) - The profile of NATA results, as captured via the 

reporting of major Conditions (C), Minor conditions (M) and/or Observations (O), was 

bimodal in nature, with PPLN reporting very few conditions (e.g. only 2 x C records from 24 

laboratories - Table 1), while SPLN recorded hundreds of C and M reports (Table 2) that 

were still exceeded after the PPLN laboratory sample size was weighted to align with the 

larger SPLN laboratory number. The aim of this project is not to explain the differences in 

NATA results between the two pathology networks, but to integrate the NATA results, as 

reflected by conditions and/or observations, with RCPAQAP cycles from the same time 

period. What is relevant, however, is that NATA profiles for the PPLN and SPLN do not allow 

a direct comparison between the state - private systems, or validation across geographical 

boundaries. What is offered, alternatively, are rules for systems that have different NATA 

experiences. 

 

(b) RCPAQAP Performance and Relationships with NATA Results  

A range of RCPAQAP results were analysed against percentile rankings, coefficient of 

variation (%), and other descriptive measures of data dispersion for each laboratory in the 

sample, prior to machine learning. Rankings based on these measures were aligned to the 

number of NATA C and M reports to assess broadly whether RCPAQAP rankings agreed 

with NATA - assessed performance. 

 Data were available for sixteen (16) time points over a RCPAQAP cycle, and 

represented a range of routine and special (e.g. drugs, antibiotics) blood or serum tests. The 

analyses conducted from here onwards focussed on routine urea, creatinine, electrolyte 

(UEC) RCPAQAP evaluations, and liver function test (LFT) markers. The UEC and LFT 

markers were available from both the PPLN and SPLN data, and were available for the 

majority of laboratories included for the PPLN and SPLN data sets (special test RCPAQAP 

was provided for a minority of laboratories from the SPLN sample, with no special test 

RCPAQAP data available from PPLN). 

 

(i) PPLN Laboratories - Table 3 summarises the ranking results for PPLN laboratories, 

focussed on three RCPAQAP markers that were previously found to be effective predictors 
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of NATA outcomes: GGT, serum creatinine and serum potassium (2). The laboratories were 

ranked in descending order by the number of NATA M observations recorded individually, 

with corresponding standard deviation (SD), percentile, coefficient of variation percent (CV%) 

and specific laboratory bias matched with the NATA M rankings. 

 The hypothesis for consideration is that the individual laboratories with zero NATA 

minor (M) reports will have the highest RCPAQAP percentile rankings (e.g. < 20%) for the 

three markers investigated, while the laboratories that recorded NATA minor (M) conditions 

(1 - 7 for the laboratories represented) would show poorer performance as assessed by their 

RCPAQAP results, with the higher number of M conditions associated with poorest 

performance. 

 

TABLE 3 - Summary of laboratory rankings for (a) serum GGT, (b) serum Creatinine, and (c) serum 

Potassium. Quality assurance programme (RCPAQAP) compared to the number and type of NATA 

observations, for a sample of individual laboratories from Private Pathology Laboratory Network. 

Laboratories were ranked in descending order by the number of Minor (M) NATA observations. 

(a) GGT 

 

Lab 

 

S.D. 

 

Percentile 

 

CV% 

 

Bias 

NATA Observations 

Condition Minor Observe NATA Total 

16 2.3 61 3 9.4 2 7 1 10 

20 1.5 22 1.9 10.4 0 7 0 7 

15 2.6 69 3.2 9.3 0 6 3 9 

21 1.6 28 2 9 0 4 3 7 

14 

    

0 3 0 3 

13 1.9 45 2.5 10.9 0 2 0 2 

19 1.5 24 1.9 10.5 0 2 1 3 

6 1.5 20 2 9.8 0 1 0 1 

11 2.5 68 3.1 8.9 0 1 0 1 

1 0.8 1 1.1 9.6 0 0 0 0 

2 1.9 46 2.4 9.6 0 0 0 0 

3 1.4 17 1.8 8.8 0 0 0 0 

4 2.1 56 2.7 11.4 0 0 0 0 

5 2.9 76 3.7 11.1 0 0 0 0 

7 1.7 35 2 7.7 0 0 0 0 

8 1.7 34 2.2 11.1 0 0 0 0 
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Lab 

 

S.D. 

 

Percentile 

 

CV% 

 

Bias 

NATA Observations 

Condition Minor Observe NATA Total 

9 2.1 56 2.7 8.7 0 0 1 1 

10 1.3 12 1.6 9.8 0 0 0 0 

12 2.1 55 2.7 10.2 0 0 0 0 

17 1.3 12 1.6 9.8 0 0 0 0 

18 2.2 59 2.8 10.5 0 0 0 0 

22 1.7 34 2.3 12.4 0 0 0 0 

 

(b) Creatinine 

Lab S.D. Percentile CV% Bias NATA Observations 

Condition Minor Observe NATA Total 

16 7.8 88 3.9 8.5 2 7 1 10 

20 3.1 7 1.6 11.7 0 7 0 7 

15 4.1 27 2.1 9.8 0 6 3 9 

21 4.7 38 2.4 8.4 0 4 3 7 

14 

    

0 3 0 3 

19 5.6 58 2.8 10.3 0 2 1 3 

13 4.9 41 2.5 12.2 0 2 0 2 

6 3.7 18 1.9 10 0 1 0 1 

11 7.2 83 3.6 6.3 0 1 0 1 

9 4.4 32 2.2 7 0 0 1 1 

1 7.7 87 3.8 13.3 0 0 0 0 

2 7.1 81 3.6 11.6 0 0 0 0 

3 3.8 20 1.9 5.9 0 0 0 0 

4 5.7 61 2.9 9.4 0 0 0 0 

5 4.6 37 2.3 9.9 0 0 0 0 

7 5.8 64 2.9 6.7 0 0 0 0 

8 4.1 27 2.1 8.8 0 0 0 0 

10 2.7 4 1.4 5.4 0 0 0 0 

12 8 89 4 10.8 0 0 0 0 
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Lab S.D. Percentile CV% Bias NATA Observations 

Condition Minor Observe NATA Total 

17 6.1 70 3.1 9.8 0 0 0 0 

18 6.9 79 3.5 11.8 0 0 0 0 

22 4.7 38 2.2 1.4 0 0 0 0 

24 5.2 49 2.7 12.8 0 0 0 0 
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(c) Potassium (K+) 

Lab S.D. Percentile CV% Bias NATA Observations 

Condition Minor Observe NATA Total 

16 0.09 82 2.1 0.02 2 7 1 10 

20 0.09 80 2.2 0.06 0 7 0 7 

15 0.05 5 1.2 0.01 0 6 3 9 

21 0.08 71 1.9 0.03 0 4 3 7 

14 

    

0 3 0 3 

13 0.08 73 1.9 0.03 0 2 0 2 

19 0.07 52 1.6 0.02 0 2 1 3 

6 0.06 31 1.5 0.04 0 1 0 1 

11 0.07 60 1.8 0.03 0 1 0 1 

1 0.06 19 1.4 0.03 0 0 0 0 

2 0.07 50 1.6 0.02 0 0 0 0 

3 0.08 67 1.9 0.06 0 0 0 0 

4 0.06 35 1.5 0.04 0 0 0 0 

5 0.1 90 2.3 0.07 0 0 0 0 

7 0.08 75 2 0.01 0 0 0 0 

8 0.07 53 1.6 0.02 0 0 0 0 

9 0.06 32 1.4 0.04 0 0 1 1 

10 0.06 28 1.5 0.03 0 0 0 0 

12 0.07 42 1.8 0.09 0 0 0 0 

17 0.11 94 2.5 0.04 0 0 0 0 

18 0.09 84 2.2 0.06 0 0 0 0 

22 0.11 94 2.6 0.01 0 0 0 0 

S.D. (Standard Deviation) CV% (Coefficient of Variation %). 

NATA Observations (from laboratory inspections) – “Condition” (must be addressed as a condition of continuing 

operation), “Minor” (satisfactorily addressed before the next inspection), “Observe” (Observation by the NATA 

assessors of interest to the laboratory, to assist the lab’s quality regime). 

Laboratories are ranked in descending order by the number of Minor NATA observations (beige column). The top 

ranked laboratory, as decided by percentile, is highlighted in the beige-shaded row. 
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For GGT (Table 3a) and serum creatinine (Table 3b) the top ranked laboratories by 

percentile (lab 1 for GGT, lab 10 for creatinine - highlighted by shading in the tables) both 

recorded zero NATA M observations, which suggests that the hypothesis on the link between 

superior NATA and RCPAQAP performances is correct. On further inspection of the GGT 

results, however, we find that a laboratory (lab 5) with a RCPAQAP percentile of 76 also 

recorded zero NATA M observations, and conversely, laboratory 20 recorded 7 M 

observations, with a RCPAQAP percentile of 22. 

 Laboratory 20 also recorded a higher percentile ranking of 7 for creatinine, in spite of 

the 7 M reports/observations. For GGT and creatinine RCPAQAP results (Tables 3a & b), in 

general, no link between NATA and RCPAQAP performance was observed when evaluating 

individual laboratories. This was confirmed by bivariate correlation analyses, which showed 

no significant associations between RCPAQAP percentile rankings and the number of NATA 

M observations reported (results not shown). This was true also for serum potassium. 

 For serum potassium (Table 3c) the top-ranked laboratory in relation to RCPAQAP 

percentile ranking was lab 15, but which also received 6 M observations from NATA, with 

only two laboratories attracting more M observations (7), indicating a mis-match between 

NATA and RCPAQAP quality ratings. Conversely, the lab with the most M observations (in 

addition to 2 x C reports and 1 x O), and the most total NATA reports of all laboratories 

investigated (lab 16), was ranked at a RCPAQAP percentile of 82, which suggests a link 

between NATA and RCPAQAP quality evaluations. To further emphasise the inconsistencies 

between NATA reports and RCPAQAP results, of the laboratories with zero NATA C, M or O 

(observations), three had percentile rankings above 90% - namely laboratories 5, 17 and 22. 

 Certain laboratories in isolation demonstrated the hypothesised relationship of zero 

(or low) NATA reports/observations with high RCPAQAP percentile rankings, suggesting that 

the lab performance as evaluated by either NATA or RCPAQAP is associated, and reflects 

laboratory quality impacts broadly. However, this was not a pattern found for the PPLN 

laboratories when considered collectively. 

 

(ii) SPLN Laboratories - As described above, the SPLN laboratory sample was larger and 

comprised a majority of B category laboratories, with around the 25% of the sample being 

supervising G category laboratories. Also notable was the large number of NATA reports 

recorded for SPLN laboratories (Table 2). With these differences, direct comparison with 

PPLN NATA and RCPAQAP performance was not possible, but some trends remained 

consistent. 

 With the larger number of C and M observations, the comparison of RCPAQAP 

percentiles (represented for analysis by quartile ranges) was achieved by calculating NATA 

C, M and C+M group means (�̅� ± SEM) and presenting them alongside the RCPAQAP 
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quartile rankings (1 represents the best performing laboratories with percentiles of < 25%, 

with quartile 4 the worst performers with percentiles of > 75%).  

 The expectation was that with a decrease in RCPAQAP quartile ranking, the mean 

number of NATA C, M and C+M reports/observations would increase, reflecting a trend from 

excellent to poor laboratory performance. Like for the PPLN results, this was not found, with 

the results (Table 4) being random; for example, the NATA C - M means being similar or 

higher for RCPAQAP quartile 1 when compared to quartile 4. This was a feature of all three 

RCPAQAP markers examined (GGT, creatinine, potassium). 

 

(iii) Conclusion - While differences in NATA profile are present when comparing PPLN to 

SPLN, the two laboratory networks share a common feature in that the results of the NATA 

inspections do not reflect the results of the RCPAQAP cycle, in this case, represented by 

previously identified serum analytes with the best predictions of NATA categories, namely 

GGT, creatinine and potassium (2). 

TABLE 4 - RCPAQAP quartile (%) rankings for SPLN laboratories according to: (a) serum Creatinine, 

(b) GGT, and (c) serum Potassium, and matched with the Mean (�̅�) NATA conditions for each quartile 

(descending from the highest RCPAQAP performance to the lowest). 

 
RCPAQAP 
Marker 

 
Percent (%) 

Quartile 

NATA Conditions 

Quartile Means (�̅�) (± SEM) 

Minor (M) Major (C) Minor + Major 

 
Serum 
Creatinine 

1 3.6 ± 0.9 2.0 ± 1.0 5.6 ± 1.7 

2 6.4 ± 0.9 3.8 ± 0.6 10.1 ± 1.4 

3 7.7 ± 1.4 4.2 ± 1.3 11.9 ± 2.6 

4 4.8 ± 1.0 1.0 ± 0.6 5.8 ± 1.3 

 
GGT 

1 6.6 ± 1.0 5.1 ± 0.9 11.6 ± 1.9 

2 6.3 ± 1.4 3.0 ± 1.0 9.3 ± 2.2 

3 4.0 ± 0.9 1.7 ± 0.5 5.7 ± 1.2 

4 7.1 ± 1.4 2.5 ± 1.3 9.6 ± 2.5 

 
Serum 
Potassium 

1 6.3 ± 1.0 3.5 ± 0.9 9.8 ± 1.8 

2 3.8 ± 0.9 1.9 ± 1.0 5.7 ± 1.8 

3 7.3 ± 1.7 4.3 ± 0.9 11.5 ± 2.3 

4 6.4 ± 1.2 3.0 ± 1.0 9.4 ± 2.2 

 
Percent Quartile Ranges: 1 (1 - 25%), 2 (26 - 50%), 3 (51 - 75%), 4 (76 - 100%) 
Quartile range 1 = Best RCPAQAP Performance; Quartile range 4 = Worst RCPAQAP Performance. 
M - Minor condition reported by NATA. C - major Condition reported by NATA. 

 

 Each PPLN and SPLN laboratory in the sample included percentile rankings, CV%, 

SD and bias specific to individual laboratories across the RCPAQAP cycle of 16 timepoints, 

and thus providing ranking of each laboratory in relation to RCPAQAP performance. 



 20 

Laboratory-specific percentiles, which accorded with CV%, were used to rank the 

laboratories in order from best to worst RCPAQAP performance (Tables 3 and 4). To these 

rankings the corresponding NATA report data were added for each laboratory, which found 

no relationship between RCPAQAP ranking and the number of C, M and/or O reports for 

PPLN laboratories (Table 3), or C, M or C+M total NATA reports for SPLN. 

 In summary, the matching of RCPAQAP and NATA results does not allow the direct 

integration of the respective data into a single quality model, suggesting more sophisticated 

treatment of the data to reveal underlying patterns that link these two data sources.  

 

(c) Machine Learning - Prediction of NATA outcomes by RCPAQAP Bias 

(i) PPLN Electrolytes - The RCPAQAP data for 22 - 23 anonymous PPLN laboratories all 

included a range of UEC serum markers, namely - bicarbonate, calcium, chloride, 

magnesium, phosphate, potassium and sodium, with GGT added as a control RCPAQAP 

marker (based on observations from our previous pilot study) (2). To interrogate the link 

between RCPAQAP and NATA reports, RCPAQAP bias values aggregated across all 

laboratories were used to explain the NATA report categories, representing PPLN 

laboratories with zero (0) NATA reports, or 1 or more (> 1) CMO conditions/observations 

reported during NATA inspections (NATA Class Yes or No). 

 

Recursive Partitioning - Using the R packages (rpart) and (randomForest), rankings and 

RCPAQAP bias thresholds were determined in relation to NATA categories, via recursive 

partitioning algorithms (Figure 1). Supporting Figure 1 is Table 5, which summarises the 

performance of the random forest analyses, as well as provides model performance 

parameters from partial least squares (PLS) investigations (R package - caret). The 

performance parameters include calculation of positive and negative predictive values. 

 

Results: The results presented in Table 5 suggest that a model utilising only the top three 

predictors of NATA class (0 or 1) (Figure 1b) was of similar predictive power as the full PPLN 

electrolyte model (Figure 1a), with serum calcium and phosphate being the best electrolyte 

predictors, in concert with serum GGT. Final model accuracy was only 2.2% lower for the top 

three predictors in comparison with the full (8 predictor variable) model, which was reflected 

also by the Out-of-Bag (OOB) error rate. Positive and negative predictive values (PPV, NPV) 

were also similar, and for both models specificity was superior to sensitivity, indicating that 

the recursive partitioning models were more effective at predicting true negative results; 

however, this was not supported by the ultimate PPV and NPV results, with the opposite 

suggested. 
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(a) 

 

(b) 

 
 

(c) 

 
 

Figure 1 - PPLN RCPAQAP electrolyte bias 

predictions of NATA class by recursive 

partitioning - (a) Full Random Forest Analysis 

(RFA) of RCPAQAP electrolyte and GGT bias; 

(b) RFA analysis of the top three predictors 

identified by RFA model in (a); (c) Single 

decision tree model of the same RCPAQAP 

electrolyte - GGT bias results to predict NATA 

CMO classes. 

* NATA classes decided as the laboratories that 

recorded NATA C, M and/or O reports (1), 

compared to laboratories with no NATA reports 

recorded (0), which coincided with the 

RCPAQAP cycle investigated (C - major 

condition; M - minor condition; O - Observation). 

 

While final model accuracies and attendant (OOB) error rates were respectable at 66 - 

68.5% and 32 - 35% respectively, the measures of model performance were poor, which 

may explain the inconsistency of the sensitivity and specificity results, in spite of the RF 

algorithm being tuned prior to analysis for optimal performance. The two statistics to observe 

in this context are Kappa and McNemar’s test results. The Kappa statistics for the final 

models of 0.33 - 0.37 indicate that the agreement of “votes” for predicting the correct NATA 

class (0 or 1) were only correct in 33 - 37% of cases. The McNemar’s test results for both 

final models were p < 0.05, indicating an imbalance of marginal values in the 2 x 2 confusion 

matrix, indicating a poor model (McNemar’s test is designed for 2 x 2 contingency test (2) 

analyses of dichotomous variables - in this case, 0 NATA reports versus > 1 NATA reports). 
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TABLE 5 - Predictive statistical and model tuning parameters of the recursive partitioning analyses 

presented in Figure 1, which interrogated PPLN electrolyte (bias) data (and GGT control) for the best 

predictors of NATA CMO class (a) all electrolyte bias predictors + GGT bias, (b) Model with the top 

three electrolyte - GGT bias predictors from Figure 1 (Calcium, Phosphate, GGT biases). 

Features and 
Results from RF - 

PLS Analyses* 

(a) 

Random Forest (RF) 

Optimal 
mtry 

Accuracy Kappa Final Model 

(OOB Error Rate) 

 

Tuned Model 

(RF) 

 

2 

 

0.648 

 

0.301 

32.14% 

No NATA Reports - 
100/154 (0.351) 

NATA CMO Reported -
109/154 (0.292) 

Features and 
Results from PLS 

Models* 

Partial Least Squares (PLS) 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning  0.631   0.605   0.583  

 

0.685 

(95% CI: 0.580, 0.778) 

 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.026 0.544 0.826 

Kappa PPV NPV 

0.370 0.758 0.644 

 

Features and 
Results from RF - 

PLS Analyses* 

(b) 

Random Forest (RF) 

mtry Accuracy Kappa Final Model 

(OOB Error Rate) 

 

Tuned Model 

(RF) 

 

2 

 

0.638   

 

0.2778 

35.06% 

No NATA Reports - 
97/154 (0.370) 

NATA CMO Reported -
103/154 (0.331) 

Features and 
Results from PLS 

Models* 

Partial Least Squares (PLS) 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning  0.618  0.568 0.628  

 

0.663 

(95% CI: 0.557, 
0.7583) 

 

 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.012 0.500 0.826 

Kappa PPV NPV 

0.326 0.742  0.623 

R Package - caret algorithms for RF and PLS 

All results except mtry, McNemar’s (p < 0.05 significance) and OOB error rate are presented as a value between 
0.0 - 1.0, where a value of 1.0 is perfect accuracy (100%), specificity, or sensitivity etc. 

OOB = Out-of-Bag; mtry = number of trees tested at each decision tree in the random forest; ROC = Receiver 
Operating Characteristic; PPV = Positive Predictive Value; NPV = Negative Predictive Value. NATA CMO - NATA 
inspection reported Conditions, Minor conditions, Observations. See Methods for RCPAQAP electrolytes bias 
calculation, details of the R recursive partitioning packages and definitions of the statistical tests included. 
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The single decision tree (Figure 1c), which was “pruned” by adjusting the model complexity 

parameter (cp = 0.01, minimum split of 30 per decision node) emphasised the importance of 

calcium bias as a predictor of NATA class, with a threshold calculated at (+) 0.0017 bias 

when compared to the RCPAQAP target value. The accuracy of a NATA 0 prediction was 

72.3% (81/112), and a correct NATA 1 prediction of 62.8% (123/196), indicating that < 

0.0017 calcium bias is more effective for the prediction of NATA 0 cases, in comparison to 

NATA 1 class prediction above this decision threshold. 

 In summary, the recursive partitioning modelling via single decision tree and random 

forest did not produce reliable models, as reflected by contradicting sensitivity/specificity 

results and the Kappa and McNemar’s statistics. While unreliable models, of the range of 

electrolytes available as data from the RCPAQAP process, serum calcium and phosphate 

bias were ranked as the top predictors of NATA class, with control bias marker GGT the third 

most effective, and more powerful in prediction than 5 other electrolyte RCPAQAP markers 

combined (removing GGT and/or using lower ranked predictors resulted in a 5 - 10% 

reduced model predictive accuracy - results not shown). 

 Based on these results, further machine learning investigations were conducted with 

the top 2 RCPAQAP electrolyte bias predictor variables, and GGT, using support vector 

machines (SVM). The SVM is a different algorithm from recursive partitioning. Rather than 

calculating model entropy or a Gini coefficient, the SVM calculates a separating hyperplane 

from “support vectors”, weighted within the model to separate complex data in a higher 

dimension of computational space (6). Whether SVM produces more accurate and robust 

models from the same results (Figure 1, Table 5) is examined in the following section. 

 

Support Vector Machines - The complexity of the relationship between RCPAQAP marker 

bias and NATA categories decided by the number of C, M and/or O reports, is amply 

demonstrated in Figure 2. The SVM allows a “slice” through a higher dimension in relation to 

x and y variables, characterising the relationship with the NATA class (0 or 1) response 

variable. For Figure 2, all plots had calcium bias and phosphate bias on the x - y axes, with 

the slice representing GGT at different bias levels (0.0 to - 0.20), revealing different patterns 

in the NATA class 1 results (positive GGT slices did not produce a dichotomy between NATA 

classes 0 and 1 - only negative GGT bias generated plots representing these classes). 
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(a)  GGT Bias = 0.0  

 

(b) GGT Bias = - 0.05 

 
(c) GGT Bias = - 0.10 

 

(d) GGT Bias = - 0.20 

 

Figure 2 - Support Vector Machine (SVM) plots summarising the relationship between serum 
phosphate and calcium (total) RCPAQAP bias, in the context of a constant GGT RCPAQAP bias, to 
predict PPLN laboratories with > 1 NATA Condition, Minor report, or Observation (NATA Class 1). 
GGT bias held constant at (a) 0.0; (b) - 0.05; (c) - 0.10; (d) - 0.20. Rectangle grid in (b) and (d) 
inserted to estimate example prediction rules for PPLN laboratories with NATA reports. 

 

Results: At a GGT bias value of 0.0 (representing where GGT target values were perfectly 

attained by the laboratory during the RCPAQAP cycle), class 1 NATA laboratories were 

barely detectable on the SVM plot, with a narrow range of 0.03 - 0.05 phosphate and 0.0 - 

0.02 calcium RCPAQAP bias (Figure 2a). In the range of GGT (-) 0.05 to (-) 0.20 bias 

(laboratory GGT results under the RCPAQAP target value), class 1 NATA laboratories are 

clearly detectable in the SVM plots (Figs 2b - d). 

 A feature of the Phosphate - Calcium - GGT (RCPAQAP bias) SVM model was the 

fragmentation of NATA class 1 clusters into separate islands, emphasising the non-uniform 

nature of the relationship between RCPAQAP and NATA results (Figs. 2b - c). In terms of 
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size, the SVM plot with the GGT bias slice of - 0.20 was smaller (Fig. 2d), suggesting that 

decreasing the GGT slice further would lead to non-detectable class 1 clusters; thus, the 

effective range for determining the phosphate + calcium RCPAQAP biases for PPLN 

laboratories with NATA reports recorded was GGT (RCPAQAP) bias levels between - 0.05 to 

an approximate lower limit of - 0.30. 

 

TABLE 6 - Summary of Figure 2 SVM plots to predict NATA Class by Ca.Bias, Phos.Bias, GGT.Bias 

SVM Model Method 

and Kernel 

Tuning & Statistical 
Coefficients 

Accuracy (%) 

(Range) 

Gamma Cost 

Full Model * C-classification 

Kernel = Radial 

2 1 66.56 

(51.61 - 83.87) 

 

 

Train & Test # 

 

 

C-classification 

Kernel = Radial 

Gamma Cost Accuracy (Diag. %) - 

Correct Class Prediction 

2 1 59.82 

Class (N) - 28/38 (73.7%) 

Class (Y) - 27/54 (50%)  
Kappa Rand 

0.22 0.51 

* 10-fold cross-validation on training data 

# R Package (caret) tuning and testing: 70 - 30% training/testing data split. Accuracy (Diagonal %): Calculated 

from the major diagonal of the 2 x 2 contingency table of correct or incorrect predictions (“confusion matrix”). 

Rand (Index) (- 1.0 to 1.0): How well the trained SVM model predicts True Positives, True Negatives, False 

Positives, False Negatives. 

Class (N) = No NATA Reports; Class (Y) = NATA Reports recorded (> 1 per lab in the sample). 

 

From the SVMs, examples of NATA Class 1 prediction models are (Fig. 2b+d: Rectangle) - 

(1) NATA Class 1 = GGT (- 0.05) + Phosphate (- 0.01 ↔ 0.03) + Calcium (- 0.018 ↔ 0.04) 

(2) NATA Class 1 = GGT (- 0.20) + Phosphate (0.04 ↔ 0.06) + Calcium (0.01 ↔ 0.035). 

 

To develop precise rules like (1) and (2) from SVM models can continue by inserting grids of 

various shapes into the plots and extrapolating to the x - y axes to estimate the phosphate 

and calcium bias ranges, captured at a specific GGT bias value. One can also generalise the 

plots; for example, Figure 2c (GGT Bias - 0.10) shows three distinct areas representing 

NATA Class 1 laboratories, with a cluster at (0.0 ↔ 0.05) phosphate bias + (- 0.03 ↔ - 0.06) 

calcium bias, as well as larger and smaller clusters of similar phosphate bias, but calcium 

biases from 0.0 ~ 0.08. To use these rules efficiently, each laboratory must conduct further 

testing and validation of RCPAQAP samples to optimise performance and feedback specific 

to their laboratory environment, particularly in terms of the analytical platforms. 

 However, as found for the recursive partitioning models, the measures of SVM model 

robustness also indicated poor predictive performance (Table 6). The kappa statistic of 0.22 

suggests that prediction agreement occurred 22% of the time, and Rand Index (that likewise 
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measures agreement from 2 x 2 confusion matrix) says that the correct prediction of true 

positives (TP), false negatives (FN) etc was only successful in 51% (0.51) of cases (Table 6). 

Therefore, caution must be applied when interpreting these results, and as suggested above, 

require further optimisation through the input of more RCPAQAP data, and repeated testing 

and validation. The results presented herein, provide a guide only since the rules were 

calculated from one RCPAQAP - NATA cycle. 

 

PPLN Electrolytes - Conclusion: The simplest rule to interpret for the prediction of PPLN 

laboratory NATA Class was the single decision tree (Figure 1c). The optimised decision tree 

(“pruned”) is an example of the application of a recursive partitioning algorithm, and provides 

a rule solely on calcium RCPAQAP bias, with a threshold of > or < 0.0017 as the decision 

point to separate NATA classes (or 0.0017 can be assigned a value of 0.0 for simplicity). 

 Moving to a different, more powerful algorithm, the SVM, demonstrated greater range 

and complexity for the decision rules, although these did accord broadly with the decision 

tree calcium bias threshold by including 0.0. The statistics applied to both recursive 

partitioning (tree) and SVM models indicated a lack of robustness, but provides a guide for 

further optimisation with the addition of data from future RCPAQAP - NATA quality cycles. 

 

(ii) PPLN Liver Function Tests (LFTs) - The same analytical logic was applied to the 

interrogation of LFT marker bias versus the same NATA reports for PPLN laboratories, as 

presented above for PPLN electrolyte RCPAQAP via recursive partitioning and SVMs. 

 NATA Classes representing all CMO reports, or M reports only, feature in LFT 

RCPAQAP bias investigations. This was required since the quality of NATA Class prediction 

results varied depending upon the number of RCPAQAP bias variables included; for 

example, the prediction of total CMO Class was best with only the top 5 LFT.Bias RF 

variables (otherwise, NATA Class 1 predictions had an error > 50%). NATA M Class only 

models produced improved models with all LFT.Bias markers included, although this 

changed again depending on how RF models were constructed. The results presented 

hereafter were deemed the best representatives from the total investigation, based, for 

example, on model metrics like McNemar’s statistic. 

 

Recursive Partitioning - Figure 3 summarises RF and decision tree (recursive partitioning) 

models for NATA CMO (total) class predictions (a and b), and a decision tree model for the 

prediction NATA M Classes (c). 

 The top five LFT (bias) predictors separating PPLN laboratories that recorded no 

NATA CMO reports from laboratories with 1 or more NATA reports were (in descending 

order of importance); LD, AST, ALP, Albumin and GGT. 
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(a) 

 

(b) 

 

(c)

 

Figure 3 - PPLN RCPAQAP LFT bias predictions 

of NATA class by recursive partitioning - (a) Full 

Random Forest Analysis (RFA) of the top 5 

RCPAQAP LFT bias variables in relation to NATA 

CMO Classes; (b) Single Decision Tree on the 

identical variables used for the RFA model 

presented in (a) (Pruned = minsplit = 30, cp = 

0.030); (c) Single Decision tree constructed with 

all available LFT RCPAQAP bias markers, in 

relation to NATA M Class alone. 

(Pruned minsplit = 30, cp = 0.030). 

* NATA Classes decided as the laboratories that 

recorded NATA C, M and/or O reports (1), 

compared to laboratories with no NATA reports 

recorded (0), which coincided with the RCPAQAP 

cycle investigated (C - major condition; M - minor 

condition; O - Observation). 

 

 For NATA CMO Class prediction, the inclusion of ALT, TBil, DBil and TP biases in 

some models resulted in Class 1 prediction error rates of greater than 50%, hence the focus 

on a subset of LFT bias predictors available for modelling. 

  

GGT_Bias

Alb_Bias

ALP_Bias

AST_Bias

LD_Bias

0 10 20 30 40

SNP.LFT.RF.rf

MeanDecreaseGini
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TABLE 7 - Summary of the PPLN-LFT decision tree model presented in Figure 3c (NATA M Class 

prediction: n= 355 - Root and terminal nodes only). Best Minor 0 or 1 predictions are highlighted. 

 
Split 

 
n 

 
loss 

 
y-value 

y-probability * 

Correct Incorrect 

Root 355 138 0 0.611 0.389 

LD.Bias > 0.029 182 48 0 0.736 0.264 

Alb.Bias < 0.044 20 2 0 0.900 0.100 

GGT.Bias < - 0.130 13 2 0 0.846 0.154 

ALP.Bias > 0.036 12 3 0 0.750 0.250 

ALP.Bias < 0.036 93 39 1 0.581 0.419 

AST.Bias > - 0.061 35 6 1 0.829 0.171 

* The y-probability indicates the accuracy of predicting either NATA Minor Class 0 (No Minor reports) or NATA 
Minor Class 1 (> 1 Minor reports) (denoted above by the y-value column). 

 

Considering the prediction LFT rules presented in Fig. 3c, and results in Table 7, the 

following decision rules are proposed to predict NATA outcome for PPLN laboratories: 

 

Decision tree rules (Table 7 and Figure 3c) - 

(3) LD.Bias (< 0.029) + Albumin.Bias (< 0.044) = NATA M Class 0 (90% correct) 

(4) LD.Bias (< 0.029) + Albumin.Bias (> 0.044) + AST.Bias (> - 0.061) = 

NATA M Class 1 (83% correct) 

 

The recursive partitioning models summarised by Figure 3a-b (total CMO NATA Classes) 

were similar to Figure 3c (M only NATA Classes), except that the role of ALB.Bias (serum 

albumin) as a leading predictor varied. The random forest (RF) identified ALP.Bias as a more 

important variable than ALB.Bias, with AST.Bias and LD.Bias important for all models. 

 Identical to the PPLN electrolyte investigations, the RF models were evaluated for 

accuracy and robustness. Table 8 summarises models used to predict NATA classes based 

on the presence or absence of total NATA reports (C, M and O) (Table 8b), and the presence 

or absence of NATA M only reports (Table 8a). 

 The best model was the RF that included all LFT.Bias variables to predict NATA M 

Classes (Table 8a). A model accuracy of 70.2% was achieved, with a McNemar’s statistic > 

0.05, indicating an effective prediction of TP, TN, FP, FN from the prediction (“confusion”) 

matrix, with a Kappa result for the model of 0.351. Therefore, while not ideal, a prediction 

model based on the rules from the corresponding decision tree (Figure 3c) was confirmed 

(Decision rules 3 & 4). The model analyses from Table 8a also display reasonable positive 

and negative predictive values for NATA Minor Class model, also as found previously for 
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PPLN electrolytes, specificity was more effective, although not significantly for this specific 

RF model. 

 The superiority of the RF (train - test) model summarised in Table 8a was reinforced 

by the less impressive results from the PLS model on the same integrated NATA - 

RCPAQAP results (all RCPAQAP LFT bias predictors versus NATA M Class - also Table 

8a). McNemar’s statistic was significant (p < 0.05) indicating that model predictions were 

significantly altered in comparison to the pre-prediction classes, which again on inspection of 

the results was due to the poor performance in predicting true positives (TP). Kappa was 

also less (< 30% agreement), with final predictive values 3 - 5% lower for the PLS modelling. 

 RF and PLS models summarised in Table 8b were focussed on the prediction of 

NATA Classes derived from the total C, M reports and Observations by the top five 

RCPAQAP bias predictors (Figure 3a). This time the PLS model was slightly superior to the 

RF model as judged by the ROC results, but in general both approaches to modelling NATA 

and integrated RCPAQAP bias results were poor, as assessed via McNemar’s and Kappa 

statistics. 

 

TABLE 8 - Predictive statistical and model tuning parameters of the recursive partitioning analyses 

presented in Figure 3, which interrogated PPLN LFT (bias) data for the best predictors of NATA class - 

as assessed via caret Random Forest or Partial Least Squares. (a) All LFT bias predictors to separate 

NATA classes were based solely on M (minor) NATA conditions: (b) Model with the top five LFT bias 

predictors from Figure 3a (total CMO NATA reports). Continued on Page 29. 

Features and 
Results from RF 

Models* 

(a) 

Random Forest (RF) 

Optimal 
mtry 

Sensitivity  Specificity Final Model Accuracy 

Model Tuning 3 0.427 0.763  

 

0.702 

(95% CI: 0.604, 0.788) 

 

Final Model 

Statistics 

McNemar’s Sensitivity Specificity 

0.151 0.512 0.825 

Kappa PPV NPV 

0.351 0.656 0.722 

Features and 
Results from PLS 

Models* 

Partial Least Squares (PLS) 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning  0.709 0.433   0.805  

 

0.673 

(95% CI:0.574, 0.762) 

 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.026 0.415 0.841 

Kappa PPV NPV 

0.272 0.629 0.688 

→ 
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Features and 
Results from RF-1 

Models* 

(b) 

Random Forest (RF) - 1 

Optimal 
mtry 

Accuracy Kappa Final Model 

(OOB Error Rate) 

- Figure 3a 

 

Tuned Model 

(RF) 

 

5 

 

0.596 

 

0.174 

35.55% 

No NATA Reports -  

129/192 = 0.33 

NATA CMO Reported - 

94/154 = 0.39 

Features and 
Results from RF-2 

Models* 

Random Forest (RF) - 2 (mtry = 2) 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning 0.639 0.512 0.683  

0.615 

(95% CI:0.515, 0.709) 
 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.040 0.413 0.776 

Kappa PPV NPV 

0.195 0.594 0.625 

Features and 
Results from PLS 

Models* 

Partial Least Squares (PLS) 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning  0.724 0.531 0.751  

0.625 

(95% CI: 0.525, 0.718) 
 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.025 0.413 0.793 

Kappa PPV NPV 

0.213 0.613 0.630 

 

Support Vector Machines - The best recursive partitioning model was explored further by 

SVM interrogation. In short, the tuned SVM models confirmed the results from the recursive 

partitioning analyses, with overall predictive accuracies at approximately 68%, and greater 

success at predicting the NATA Low (zero reports) Class than the Class representing NATA 

conditions or observations (69.6% versus 62.5%; Table 9). 

 Figure 4 shows representative SVM plots for LD.Bias versus AST.Bias with an 

ALP.Bias slice at - 0.20 (a), 0.0 (b) and 0.02 (c) bias values. ALP.Bias was identified by 

recursive partitioning (Figure 3) as of similar predictive power as ALB.Bias, which was 

featured in the decision support model proposed earlier (ALB.Bias was chosen for decision 

support since it provided terminal decision nodes with more cases available for an accuracy 

calculation - Figure 3a - Table 7). 

 In addition, the ultimate predictive values of the RF and PLS models were 5 - 10% 

less than the Table 8a (RF) model. Table 8b also presents a standard tuned RF model (RF - 

1) that according to the OOB error rate, had a < 65% accuracy, and a Kappa value < 20%. 
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On this basis, the final model of NATA Class prediction will use Minor reports only from a 

model that included all RCPAQAP (LFT) bias variables available, with the final results 

summarised by Figure 3c and decision rules (3) and (4). 

 

TABLE 9 - Summary of Figure 4 SVM plots, reporting the results of the full PPLN LFT (RCPAQAP 

Bias) SVM Model for Minor NATA responses. 

SVM Model Method 

and Kernel 

Tuning & Statistical 
Coefficients 

Accuracy (%) 

(Range %) 

Gamma Cost 

Full Model * C-classification 

Kernel = Radial 

0.0313 16 68.391 

(57.14 - 80.0) 

 

 

Train & Test # 

 

 

C-classification 

Kernel = Radial 

Gamma Cost Accuracy (Diag. %) - 

Correct Class Prediction 

0.0313 16  68.103 

Class (N) - 64/92 (69.6%) 

Class (Y) - 15/24 (62.5%) 
Kappa Rand 

0.2481 0.562 

* 10-fold cross-validation on training data 

# R Package (caret) tuning and testing: 70 - 30% training/testing data split. Accuracy (Diagonal %): Calculated 

from the major diagonal of the 2 x 2 contingency table of correct or incorrect predictions (“confusion matrix”). 

Rand (Index) (- 1.0 to 1.0): How well the trained SVM model predicts True Positives, True Negatives, False 

Positives, False Negatives. 

Full model: NATA Minor Class ~ Alb.Bias + ALP.Bias + AST.Bias + GGT.Bias + LD.Bias. Final SVM prediction 

models used LD.Bias + AST.Bias + ALP.Bias (ALP = slice of fixed bias value) only to predict NATA M class. 

Class (N) = No NATA M Reports; Class (Y) = NATA M Reports recorded (> 1 per lab in the sample). 

 

The SVM patterns for PPLN-LFTs had clearer trends in comparison to PPLN-electrolyte SVM 

plots (Figure 2). For the ALP.Bias slice at - 0.20 (Fig. 4a) the entire range of LD.Bias (- 0.06 

to 0.10) was involved in the prediction of PPLN laboratories that received NATA conditions or 

observation reports (NATA Class Y - denoted as “High” in the plots), with AST.Bias reducing 

on a steady gradient from a peak of 0.0 (LD.Bias: - 0.06), to approximately an AST.Bias of - 

0.15 at a corresponding LD.Bias value of 0.04 - 0.05, after which the AST.Bias increased to 

approximately - 0.12 (LD.Bias 0.10). At ALP.Bias slices of 0.0 and 0.02 (Figures 4b - c), 

similar NATA Class Y predictions were observed with ranges between approximately - 0.03 

to - 0.20 for AST.Bias, and - 0.05 to - 0.01 for LD.Bias. Extending the ALP.Bias slice to 

smaller or larger bias values did not produce a clear separation between NATA Y and N 

Classes (results not shown). Furthermore, the SVM results suggested that for laboratories 

that attracted NATA Minor conditions, prediction results under the designated RCPAQAP 

target value were achieved as a general trend.



 

(a) (b) (c) 

 

Figure 4 - Support Vector Machine plots representing the patterns associated with PPLN laboratories that received NATA reports and observations (Class - 
High: Yellow) or reported zero conditions and observations (Class - Low: Maroon), with model features summarised in Table 9. 

The NATA Class prediction model was: 

NATA Minor (M) Class (High or Low) ~ Alb.Bias + ALP.Bias + AST.Bias + GGT.Bias + LD.Bias. Plots present the interaction of LD.Bias + AST.Bias + 
ALP.Bias to predict NATA M class. RCPAQAP AST.Bias sits on the y-axes, and LD.Bias on the x-axes, with ALP.Bias applied to slice the AST - LD plots at 
RCPAQAP bias values of (a) - 0.20; (b) 0.0; and (c) 0.02 ALP.Bias. 
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Conclusions (PPLN - LFT): Recursive partitioning produced a robust NATA Class 

prediction of 70% accuracy, with positive and negative predictive values of 66% and 72% 

respectively, generated from a model comprising only Minor (M condition) NATA report 

response classes, and all LFT RCPAQAP bias variables. While relatively robust as indicated 

by the McNemar’s statistic, the prediction of true negatives (TN) was favoured, which 

impacted model performance as shown by the Kappa results (Table 8a). RF algorithms 

performed better in comparison to PLS (R caret package training and testing), with decision 

trees providing support by calculating LFT.Bias thresholds (Figure 3c). 

 SVM investigations of the same PPLN - LFT bias data did not produce robust models 

(e.g. Rand Index), with predictive accuracies of less than 70%. From these machine learning 

models, the RCPAQAP LFT biases of LD, AST, ALP and albumin (ALB) were best for the 

prediction of which PPLN laboratories received NATA condition reports and/or observations. 

SVM results suggested that in general PPLN laboratories with NATA reports came under the 

RCPAQAP target values, with more data required to investigate greater model sensitivity. 

 

(iii) SPLN Electrolytes - Recursive partitioning and SVM investigations were conducted for 

integrated NATA and RCPAQAP results, exactly as performed for PPLN laboratories. 

 As explained in section 3 (a), the profiles of NATA results were very different for 

PPLN in comparison to SPLN. For the PPLN laboratory NATA profile, conditions, minor 

reports and observations were counted to provide enough scope to create two NATA 

response classes for interrogation. The result was a Class with no NATA reports, and the 

“yes” class consisting of laboratories with 1 or more conditions/minor reports or observations 

(C, M, O). For SPLN, 128 Conditions (C) and 244 Minor total NATA reports were recorded 

(Table 2). With this NATA C - M profile, the count of observations was not required. The 

NATA response classes for interrogation by SPLN electrolyte or LFT RCPAQAP bias, 

therefore, were calculated as above or below the median number of NATA C-M reports (the 

“low” class contained laboratories with zero reports, but these were a minority). As warned 

earlier in the report, this situation made a direct comparison of eventual PPLN and SPLN 

machine learning models difficult, but nonetheless will assist in identifying features of 

laboratories with varied NATA performance, as captured by the RCPAQAP cycle. 

 The SPLN NATA - RCPAQAP recursive partitioning and SVM results follow, for 

electrolytes (+ GGT) and LFT results, again represented as aggregated RCPAQAP relative 

bias results to predict NATA response (High versus Low) Classes. 

 

Recursive Partitioning - The random forest (RF) and decision tree investigations successfully 

validated two previous results observed for SPLN laboratories: (1) a focus on the NATA 

reporting of minor (M) conditions only, and not a combination of major and minor conditions 

(C & M) as a response for RCPAQAP bias modelling - these produced the most accurate 
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and robust integrated predictive models, and (2) GGT.Bias again showed a powerful 

interaction with RCPAQAP electrolyte bias (2, 3) in the prediction of (M) NATA Classes. 

 

TABLE 10 - Predictive statistical and model tuning parameters of the recursive partitioning analyses 

presented in Figure 5, which interrogated SPLN electrolyte + GGT (bias) data for the best predictors of 

NATA class (High or Low NATA Minor condition reports), as assessed via caret Random Forest or 

Partial Least Squares. 

Features and 
Results from RF 

Models* 

Random Forest (RF) 

Optimal 
mtry 

Sensitivity  Specificity Final Model Accuracy 

Model Tuning   4 0.735 0.647  

 

0.712 

(95% CI: 0.641, 0.776) 

 

Final Model 

Statistics 

McNemar’s Sensitivity Specificity 

0.272 0.771 0.648 

Kappa PPV NPV 

0.420 0.705 0.722 

Features and 
Results from PLS 

Models* 

Partial Least Squares (PLS) 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning  0.715 0.719 0.626  

 

0.674 

(95% CI: 0.601, 0.741) 

 

 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.028 0.781 0.557 

Kappa PPV NPV 

0.341 0.658 0.700 

Model interrogated - NATA Minor Class → RCPAQAP Bias results: serum Bicarbonate + Calcium + Chloride + 
Creatinine + Magnesium + Phosphate + Potassium + Sodium + (GGT) Bias. 

 

Deeper analysis of the recursive partitioning models for integrated NATA - RCPAQAP results 

are summarised in Table 10, with supporting plots displayed in Figure 5. The model 

evaluated the prediction of NATA M Classes by bias values calculated from all electrolyte 

markers, and GGT, run for RCPAQAP assessment. 

 The tuned RF (caret) model had an overall accuracy prediction of 71.2%, a non-

significant McNemar’s statistic (p = 0.272), with both positive and negative predictive values 

over 70% (Table 10). Sensitivity was approximately 9 - 14% higher than specificity, indicating 

greater success at correctly predicting true positive results. The Kappa statistic was less than 

50%, and while an improvement on the same statistic for PPLN laboratories, suggests poor 

performance in prediction agreement with the algorithm. Table 10 also presents the caret 

PLS results of the same RCPAQAP + NATA model. Poorer performance was found in 

comparison with the RF model, with a significant McNemar’s results and lower Kappa. 

Overall accuracy was less, as well as for predictive values, particularly the positive predictive 

value (PPV). The role of GGT.Bias was also evaluated for the identical recursive partitioning 

models (Figures 5a,5b). 
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(a) 

 

(b) 

 
(c) 

 

Figure 5 - Plots summarising the recursive 

partitioning analysis of SPLN electrolyte - 

creatinine data, with and without GGT. (a) 

Random Forest (GGT Bias included); (b) 

Random Forest (GGT removed), and (c) Single 

Decision Tree, including the GGT.bias variable. 

 

Response modelled was NATA Minor 

conditions, represented as High or Low 

Classes 

 

 

The removal of GGT.Bias weakened the model accuracy, particularly the prediction of the 

low (M) NATA Class, although both NATA Classes were less accurate (Table 11). 

 ANCOVA modelling of GGT.Bias (dependent variable) in relation to fixed factor(s) 

(e.g. NATA Class) and continuous covariates showed that the top-ranked UEC.Bias markers 

significantly explained the variation of GGT.Bias, for both the NATA Minor Class and the 

NATA combined Minor & Condition Class (see Performance Report 4 - Table 2). The leading 

RF predictors (e.g. bicarbonate bias, creatinine bias) had highly significant p - values (i.e. p < 

10-9), while potassium and sodium bias were not significant covariates to explain GGT.Bias. 

NATA Minor alone and Minor + Condition Class models both had R2 values of 0.76, 

indicating that the variables in the model explained 76% of GGT.Bias variation. Of additional 

interest was that dividing the SPLN laboratories into B or G categories was not significant in 

terms of this RCPAQAP and NATA integration model, indicating no effect for laboratory 

category. 
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TABLE 11 - The impact of GGT.Bias calculated from RCPAQAP data on the Electrolytes, Creatinine 

(EC) model of NATA (Minor report) Class random forest modelling and prediction (Fig. 5). 

NATA Class - 

Minor Reports 

GGT Included in UEC Model GGT Excluded from UEC Model 

Prediction 
Accuracy (%) 

Overall 
Accuracy (%) 

Prediction 
Accuracy (%) 

Overall 
Accuracy (%) 

High (> Median) 241/320 (75.3%) 71.3% 230/320 (71.9%) 66.4% 

Low (< Median) 198/296 (66.9%) 179/296 (60.5%) 

Model interrogated - NATA Minor Class → RCPAQAP Bias results: serum Bicarbonate + Calcium + Chloride + 
Creatinine + Magnesium + Phosphate + Potassium + Sodium + (GGT) Bias. 

The median number of Minor (condition) reports across all SPLN laboratories was calculated to allow the 
designation of high (> median) and low (< median) NATA Classes for modelling with RCPAQAP results. 

 

GGT Bias was also the leading predictor when included in the LFT.Bias panel to explain 

NATA classes for SPLN laboratories (next section - iv), while it was not a leading predictor 

for PPLN results. 

 

 Therefore, a key finding from this research programme (this and the previous pilot 

study) was the identification of GGT as the leading RCPAQAP marker with which to 

understand patterns in NATA reports, but it seems, only for laboratory networks that attract a 

broad range and diversity of NATA Conditions and Minor (conditions) reporting. As shown by 

the electrolyte (UEC) results, this predictive power is useful broadly, not only for LFT profiles 

(an explanation for the GGT impact is presented in section (4), below). 

 

An analysis identical to that presented in Table 7 was conducted, from which a predictive 

model can be proposed. The models were designed to take the best decision tree terminal 

node predictions (Fig. 5) with the least loss of cases. Therefore, to predict the High (Minor) 

NATA Class, we have the following decision rules (Table 10, Figure 5); 

 

(5) GGT.Bias (> 0.0128) + Creatinine.Bias (> 0.024) = NATA Low Class (83.02%) 

(6) GGT.Bias (< 0.0128) = NATA High Class (69.85%) * 

 

* The next most accurate decision rule for NATA High (64.21%) involved creatinine and 

bicarbonate biases, as well as GGT. 

 

Support Vector Machines - As conducted for the PPLN NATA - RCPAQAP analyses, SVM 

was also applied to the results to assess whether a model of increased accuracy/utility could 

be identified via this algorithm. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6 - SVM plots representing the detection 

of High (1) or Low (0) NATA Minor report 

Classes for SPLN laboratories using a simple 

model of the leading random forest predictors, 

GGT, bicarbonate and creatinine RCPAQAP 

bias values. (a) GGT vs Creatinine; (b) GGT vs 

Bicarbonate; (c) Creatinine vs Bicarbonate. 

No additional dimensions (slice) were included. 

Low NATA Class (Yellow); High NATA Class 

(Maroon). 

Model accuracy = 66.23% (58.1 - 72.6%), at 

coefficients of Cost = 4, Gamma = 0.125. 

Figure 6 summarises the interaction of the top three NATA Class predictors as determined 

by RF (Figure 5a). No slice dimensions were applied to these models due to the difficulties of 

defining plots with separated high versus low NATA Classes. The RCPAQAP bias GGT 

interactions with creatinine or bicarbonate showed a reversed pattern of GGT fluctuation over 

a broad range for both RCPAQAP markers (Figures 6 a, b). At approximately - 0.3 creatinine, 

GGT bias was 0.25, with this trend descending to 0.0 GGT by just over 0.2 creatinine bias. 

The opposite was true for bicarbonate in relation to GGT, with GGT below 0.0 for an 

approximate value of - 0.3 bicarbonate, increasing to 0.1 GGT at a bicarbonate value of 0.1 

bias, then decreasing slightly. Both bicarbonate and creatinine (Figs. 6a, b) also showed a 

NATA class region at 0.4 GGT, of different widths, suggesting an additional decision rule. 

 Of note was the wider range of bias variation among GGT, bicarbonate and 

creatinine, when compared to the SVM plots presented earlier in the report for PPLN 

laboratories. As reported previously (Performance/Milestone Report 4 and others), there is 

an obvious separation of GGT bias for SPLN laboratories associated with NATA Minor Class. 

The effect was not as subtle as found for other interactions, which therefore can be proposed 

as a reason for these wider RCPAQAP bias ranges. 
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The SVM plot describing the interactions of bicarbonate and creatinine bias in predicting 

NATA Class had two distinct NATA low regions, the first extending from - 0.05 creatinine to 

approximately - 0.1 bicarbonate bias (Figure 6 c). The second smaller region covered 

creatinine ~ 0.15 - 0.20 and 0.16 to > 0.20 bicarbonate bias. 

 Referring to the corresponding decision tree (Figure 5c) showed that the bias ranges 

detected by SVM were broadly accurate, particularly that involving the GGT.Bias decision 

tree node of > < 0.1507. The SVM model (Figure 6) had an accuracy of 66.23% (Cost = 4; 

Gamma = 0.125). No SVM prediction models exceeded an accuracy of 70%, in spite of 

algorithm ensemble tuning and evaluation (see Appendix E for machine learning ensemble 

analyses, and SVM model development examples). 

 

Conclusions (SPLN - UEC + GGT) - As alluded to earlier, differences due to the range and 

variety of NATA reports for PPLN in comparison to SPLN were likely to impact the prediction 

models and decision rules (differences in sample size between PPLN and SPLN may also 

contribute - not explored directly for this project). 

 The SPLN results showed again that in combination with RCPAQAP bias results for 

UEC (although serum urea was not available), GGT was a powerful predictor of 

category/class calculated from the count of minor conditions by NATA, with ANCOVA 

analysis previously showing the strength of the top RF UEC predictors as covariates that 

explain the variation in GGT bias, calculated from RCPAQAP results. This GGT function in 

predicting NATA results has now been validated by a second study, and alone contributes an 

additional 5% accuracy to the RF models (Table 11). For the equivalent UEC study of PPLN 

laboratories, GGT.bias ranked highly in RF models, but was not as powerful in the PPLN 

context (although GGT provided a slice for the PPLN SVM models). 

 RF models were more effective for SPLN analysis in terms of accuracy and model 

robustness statistics, compared to PLS tuned models, with a trend to being more successful 

for correctly predicting true positives, which was different trend in comparison to PPLN 

UECs. 

 The SVM analyses provide useful plots to explain the complexity of the interactions 

between 2 - 3 variables as predictors of response class. In the specific case of SPLN, the 

SVM patterns demonstrated the wide range of creatinine and bicarbonate bias, with 

GGT.Bias promoting variation in the prediction thresholds (Figures 6 a, b), again 

demonstrating its powerful influence on NATA Class prediction. 

 

(iv) SPLN LFTs - The SPLN RCPAQAP results for LFTs offered extra markers (e.g. direct 

bilirubin), but only markers in common with PPLN results were used for the recursive 

partitioning and SVM models that follow. 
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GGT.Bias has been established as a powerful individual predictor within an electrolyte 

profile, so interest in GGT performance with other LFTs will be viewed closely. The available 

markers cover routine and true LFTs (e.g. ALT and total bilirubin, respectively). This variety 

of LFT QAP markers will provide opportunities to better understand RCPAQAP interactions 

with NATA results. 

 

Recursive Partitioning - GGT.Bias was the leading predictor among the RCPAQAP results 

for the selected LFTs applied to recursive partitioning models (Figure 7a). Also notable were 

the single decision trees, one designed to detect NATA classes calculated from the number 

of Minor conditions (Figure 7b), and the other to detect NATA classes derived from 

Conditions (Figure 7c). The RF for NATA condition classes had the same hierarchy of 

RCPAQAP bias predictors as presented in Figure 7a (although LD.Bias was removed from 

the later modelling based on single decision tree results). 

 The NATA Minor Classes produced a more complex decision tree (Figure 7b), 

compared to the NATA Condition Classes decision tree (Figure 7c). Both models featured 

GGT.Bias as the leading predictor, as confirmed by the random forest analysis (Figure 7a), 

which also showed AST and ALT biases as the second and third ranked predictors 

respectively. For the decision tree model to predict NATA Classes based on Condition 

categories (Figure 7c), the GGT node branched into an AST.Bias node only, while the 

prediction of NATA Minor Classes, grew and extra node from AST to include ALT.Bias in the 

model, hence the added complexity. This also translated into different NATA Class prediction 

accuracies, namely; 

 

(7) NATA Minor Prediction: GGT.Bias (> 0.0128) + ALT.Bias (> 0.0278) = NATA Low (0) 

Class (68.2%); 

(a)  GGT.Bias (< 0.0128) = NATA High (1) Class (69.9%) * 

 

* A NATA High (1) prediction of 61.2% was also identified at ALT.Bias (< 0.0278) + AST.Bias 

(< 0.0628). A 100% prediction NATA (0) Low was found at AST.Bias > 0.0628, but only with 

10 total cases available for interrogation (Figure 7b). 

 

(8) NATA Condition Prediction: GGT.Bias (> - 0.0117) + AST.Bias (> - 0.0448) = NATA Low 

(0) Class (64.7%); 

(a) GGT.Bias (< - 0.0117) = NATA High (1) Class (70.8%) * 

 

* A NATA High (1) prediction of 61.8% was also identified at AST.Bias (< - 0.0448). 
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The highest accuracies calculated from the Figures 7b decision tree were approximately the 

same, within the narrow range of 68 - 70% to predict the NATA Minor Classes, whereas the 

accuracy range from Figure 7c was wider for NATA Condition Class predictions. 

 Interestingly, the NATA Condition analysis had decision bias thresholds less than 0.0, 

whereas for the design of decision rules for NATA Minor Classes, the thresholds were > 0.0 

bias. Threshold values for both decision tree models ranged between - 0.05 to 0.06 bias. 

 

TABLE 12 - The impact of NATA Class (Minor or Conditions medians) on recursive partitioning 

models. (a) Decision tree modelling and prediction (accuracy calculated via R caret package: 70/30 

training - testing split), and (b) Random Forest model results reported as out-of-box (OOB) error rates. 

NATA Class - 
Minor or 
Condition * 
Reports (a) 

NATA Minor Class (LFT Model) NATA Condition Class (LFT Model) 

Prediction 
Accuracy (%) 

Overall 
Accuracy (%) 

Prediction 
Accuracy (%) 

Overall 
Accuracy (%) 

High (> Median) 67.8 
 
 

70.2 

68.4 
 
 

73.1 
Low (< Median) 73.6 79.1 

 
NATA Class (b) 

 
OOB Error Rate 

 
Overall OOB 
Error Rate 

 
OOB Error Rate 

 
Overall OOB 
Error Rate 

High (> Median) 24.8 
 
 

26.6 

30.3 
 
 

27.0 
Low (< Median) 28.5 24.2 

(a) Decision tree Model - NATA Minor or Condition Class → RCPAQAP Bias results: GGT + ALT + AST + TBil + 

TP. Minimum splits = 30 + Complexity Parameter (cp) = 0.025 (Minor); Minimum splits = 30 + cp = 0.030 
(Conditions). 
(b) Random Forest Model - NATA Minor or Condition Class → RCPAQAP Bias results: GGT + ALT + AST + TBil 

+ LD + TP. 5000 trees interrogated, mtry = 2 (2 variables entered per tree). 

* The median number of Minor or Condition reports across all SPLN laboratories was calculated to allow the 

designation of high (> median) and low (< median) NATA Classes for modelling with RCPAQAP results. 

 

The accuracy of recursive partitioning models was explored further via R caret decision tree 

training and testing (Table 12a), as well as by a full tuned random forest model (Table 12b), 

for both NATA Minor and Condition Class modelling. 

 Considering the Table 12 results, NATA Class prediction varied between 68 - 79%. 

For the full model (Table 12b), OOB error rates varied between 24 - 30%, which together 

suggest accuracies between 70 - 76%. The caret (70/30 training - testing split - Table 12a) 

showed more success for both NATA minor and condition low class prediction, whereas the 

full model (Table 12b) showed inverted high versus low error rates, depending on whether 

the model predicted high or low NATA Classes. These results demonstrate the difficulties in 

analysing these combined NATA and RCPAQAP results. 
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On considering these results, and after tuning - optimising the models further, additional 

analyses involving only NATA minor classes and excluding LD.Bias were performed (Table 

13). The performance of the caret RF model was superior, with positive and negative 

predictive values over 70%, a kappa statistic result over 40%, a McNemar’s results of p > 

0.25, and an overall model accuracy of almost 72% (Table 13b). The PLS model (also Table 

13b) was not as impressive, presenting the RF caret optimisation and modelling as the best 

strategy for the development of integrated NATA and RCPAQAP prediction, in relation to 

model accuracy and robustness. 

 

(a) 

 

(b) 

 

(c) 

 

 
 
Figure 7 - Recursive partitioning results from 

the modelling of RCPAQAP bias value results, 

to predict the NATA performance Class. 

 

(a) Random Forest model predicting NATA 

Classes comprising Minor reports only; (b) the 

same model as (a), but interrogated by a single 

decision tree; (c) The same decision tree 

interrogation as (b), but for predicting NATA 

Classes comprising the count of Condition (C) 

reports. 

 

Support Vector Machines - Informed by the recursive partitioning results, SVM models were 

developed that focussed on the prediction of NATA Minor Classes via the top three 

RCPAQAP predictor variables, namely GGT.Bias, ALT.Bias and AST.Bias (Figure 8). 

 With GGT and ALT x and y axis variable respectively, AST was introduced as the 

extra dimension slice at three bias levels. With the AST (bias) slice at - 0.15 (Figure 8a), both 

Bias.TP

Bias.TBil

Bias.ALT

Bias.AST

Bias.GGT

0 20 40 60 80

NSW.LFT_CARET.rf

MeanDecreaseGini
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GGT and ALT biases were predicted at > 0.0 for NATA Class 0, with ranges of approximately 

(~) GGT 0.2 to > 0.4, and ALT at 0.0 to > 0.4. At the neutral slice of 0.0 Bias (exact 

RCPAQAP target value) (Figure 8b), the GGT range was extended negatively to ~ 0.15, with 

higher threshold remaining at > 0.4, whereas ALT was condensed to a range of - 0.15 to 

0.20. Figure 8c shows that most of the ALT prediction range sat below 0.0, whereas at < - 

0.15 GGT predictive range was between 0.0 and 0.3, in relation to NATA low M predictions. 

 

TABLE 13 - Predictive statistical and model tuning parameters of the recursive partitioning analyses 

presented in Figure 7, which interrogated SPLN LFT (bias) data for the best predictors of NATA class 

(High or Low NATA Minor condition reports), as assessed via a full randomForest model (a), and caret 

Random Forest or Partial Least Squares (b). 

 

Features and 
Results from a full 

RF Model 

(a) 

Random Forest (RF) - Full Model 

Optimal 
mtry 

Accuracy Kappa Final Model 

(OOB Error Rate) 

- Figure 7a 

 

Tuned Model 

(RF) 

 

5 

 

71.96% 

 

ND 

28.04% 

High NATA (M) 
Reports  

236/320 = 0.263 

Low NATA (M) Reports 

213/304 = 0.299 

Features and 
Results from caret 

Models (b) 

Random Forest (RF) - caret (mtry = 5) 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning 0.785 0.746 0.705  

 

0.7166 

(95% CI: 0.646, 0.780) 

 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.272 0.771 0.659 

Kappa PPV NPV 

0.431 0.705 0.732 

Features and 
Results from PLS 

Models* 

Partial Least Squares (PLS) - caret 

ROC Sensitivity  Specificity Final Model Accuracy 

Model Tuning  0.717 0.724 0.601  

0.668 

(95% CI: 0.596, 0.735) 
 

Final Model 
Statistics 

McNemar’s Sensitivity Specificity 

0.008 0.792 0.539 

Kappa PPV NPV 

0.332 0.644 0.710 

Model interrogated - NATA Minor (High/Low) Class → RCPAQAP Bias results: ALT + AST + TBil + GGT + TP 
(LD.Bias did not contribute any influence single decision tree results: LD excluded from subsequent models). 
 

Conclusions (SPLN - LFTs) - The combination of recursive partitioning and SVM modelling 

bring analytic elements that complement the other. The thresholds calculated from single 

decision trees (Figure 7) were all < 0.10, providing finely tuned predictions that were 
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complemented by the SVM plots (Figure 8), which illustrated the broader patterns associated 

with the top (bias) predictors identified by recursive partitioning. 

 Ultimately the best model for the prediction of NATA outcomes involved a focus on 

the count of minor reports for the sampled laboratories, using GGT, ALT and AST biases as 

predictors (with the prominence of GGT and NATA minor reports validating previous results 

from the earlier pilot study). Therefore, the count of minor reports, which tend to be more 

numerous, and GGT, are key to the design of an integrative model of laboratory 

performance. 

 

(a) 

 

(b) 

 

(c) 

 

 

 

Figure 8 - Support vector machine (SVM) plots 

representing the interactions between the top 

three RCPAQAP (Bias) predictors of NATA 

Classes formed by the number of Minor reports 

recorded (high or low in relation to the 

aggregated median). The plots all represent 

ALT and GGT on the x - y axes, with SVM slices 

for AST included at the following bias values - 

(a) - 0.15 (b) 0.0 and (c) 0.15. 

(d) Patterns in RCPAQAP-Bias Frequency Distributions: A Possible Explanation for the 

leading NATA Class Outcome Predictors 

Performance Report 4 (July 2019) presented data on the RCPAQAP bias profile of GGT 

linked to SPLN laboratories. A series of boxplots and error bar plots, representing the 

RCPAQAP test cycle (1 - 16), demonstrated the pattern of distribution for GGT.Bias when 
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separated into classes based on higher or lower NATA minor reports. For low NATA M 

reports, the medians across the 16 RCPAQAP cycles were close to a bias value of 0.20, 

whereas the high M reports were closer to zero (0.0). This clear distinction in bias patterns 

was not found for NATA C or C+M Classes, or when the results were separated on the basis 

of B or G laboratory designation. 

 As stated above, a key result from this project is the value of GGT (bias) results from 

the RCPAQAP cycles as a predictor of NATA results represented as classes/categories. 

Since we have the prediction of two distinct classes (yes/no, high/low), a clear separation in 

the bias results for GGT, and other important RCPAQAP markers, may help explain their 

power as NATA Class predictors. To investigate further, RCPAQAP results for GGT and 

other markers were plotted as histograms, and randomness (from a median of 0.0 bias) was 

assessed via the non-parametric Runs Test. 

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

 
Figure 9 - Frequency histogram plots of the 

leading RCPAQAP (Bias) predictors of NATA 

Class from the SPLN laboratory network 

investigated. The x-axis represents the 

distribution of cases across the range of 

analyte biases calculated for the following 

markers - 

(a) GGT; (b) Sodium bicarbonate; (c) AST; (d) 

serum creatinine, and (e) ALT. 
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(a) 

 

(b) 

 
 

Figure 9 summarises the frequency distribution of leading UEC and LFT (RCPAQAP) 

predictors of NATA Class, found for SPLN laboratories. As for all analyses presented, the 

RCPAQAP results were transformed into the relative bias values of individual markers, in 

relation to the cycle target value. GGT.bias frequency distribution shows a bimodal pattern 

spanning a bias range of approximately - 0.20 to 0.5, with a separation existing (by virtue of a 

very low frequency of cases) at approximately 0.10 bias (Figure 9a). The distribution is 

uneven in relation to a bias of 0.0, with higher peaks from the 0.0 to negative bias range. 

 This dichotomy in GGT.Bias frequency distribution may explain its predictive power 

for SPLN laboratories in the context of NATA results. The recursive partitioning and SVM 

algorithms work by separating complex data into classes, via decision boundaries (partitions) 

or a separating hyperplane respectively. The GGT distribution, therefore, would render these 

mechanisms more effective. 

 While not as pronounced as GGT.Bias, sodium bicarbonate (Figure 9b) and AST 

(Figure 9c) show a similar bimodal pattern, which again may explain their utility as predictors. 

Creatinine and ALT bias distributions were skewed, but not bimodal, with broad bias 

distribution ranges (Figures 9d, e). Other markers with a narrow bias range, e.g. potassium, 

had low RF rankings as NATA Class predictors. 

 Statistical analyses determined that the results (Figure 9) were not random (Runs 

test: p < 0.001), and the actual median values for the biases plotted were significantly 

different to the optimal bias performance of 0.0 (Single sample Wilcoxen Sign Rank test: p < 

0.001), emphasising the skewed distribution. 

 

Conclusion - In summary, a bimodal frequency distribution with a comparatively broad 

range in relative bias values is associated with RCPAQAP marker results (e.g. GGT) that 

have the best performance as NATA predictors for recursive partitioning and SVM modelling. 

It must be noted that these observations and conclusions relate to SPLN results, and not the 

findings on PPLN RCPAQAP and NATA integration (results not shown). As explained earlier, 

the NATA profiles for PPLN and SPLN were different, so not directly comparable. 
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(e) Point-of-Care Tests 

NATA reports and RCPAQAP results specific to point-of-care testing (PoCT) were made 

available by the SPLN for three regions from their state-wide pathology network. RCPAQAP 

results associated with troponin I (TnI), blood gas analyses (e.g. pH, pCO2), UECs, LD and 

haemoglobin/haematocrit were available, from which representatives were selected for 

investigation in the context of NATA performance. 

 

(i) NATA Results - Table 14 summarises the NATA feedback and results for each of the 

three SPLN regions. No conditions (C) were recorded for any region, but two of the three 

regions recorded minor (M) conditions and all attracted observations (range 14 - 25). The 

feedback associated with minor reports mention the new POCelerator on several occasions, 

primarily involving problems of correct reporting and maintenance records, and some 

reference to the need for IT updating. The concerning issue of under-staffing was also noted 

by NATA assessors, particularly the situation where a senior scientist had supervisory 

responsibility for 20 - 25 PoCT sites, with unpaid weekend work noted, broadly suggesting a 

Risk and a Supervision failure. Other issues raised in relation to minor conditions could be 

linked to inadequate staffing, or overwork by those responsible for PoCT; for example, poor 

record-keeping, failure to update systems, non-circulation of the PoCT newsletter. 

 

Table 14 - Summary of NATA feedback and reporting on point-of-care testing (PoCT) performance for 

three regions within the State Pathology Laboratory Network. 

NATA Performance State Pathology Laboratory Network (SPLN) Region 

Region 1 Region 2 Region 3 

Conditions 0 0 0 

Minor 6 5 0 

Observations 25 14 15 

ISO 15189 Clauses 

Minor Condition 
Feedback 

4.1.2.1, 4.3, 5.3.1.7(i,j), 

5.8.1, 5.10.3 

4.1.1.3(e), 4.1.2.1, 

4.2.1.6, 4.3, 4.9 

None 

 

Example Comments 

(Minor Conditions) 

… transcription of 
RCPAQAP results; 
POCelerator functionality; 
disparate refrigerator 
temperatures for PoCT 
reagents (e.g. > 8oC); correct 
reporting - PoCT 
maintenance. 

Inadequate staffing, 
supervision … PoCT; 
Documentation of non-
conformities; Poor 
communication of PoCT 
Newsletter. 

Assessed and 
satisfactory. 

 

(ii) RCPAQAP Results and NATA-RCPAQAP Models - A number of RCPAQAP PoCT 

markers were available for analysis, with results from twelve time points comprising the full 
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cycle. Four markers were chosen for further investigation, namely, TnI, pCO2, serum 

creatinine and blood glucose. These four RCPAQAP markers were chosen based on the low 

incidence of missing data (more missingness, less reliable), as well as the extent and 

diversity of variation within the individual marker range (namely, variation around a median or 

target value is required for the algorithms employed to separate the response classes under 

investigation). Identical to the exploration of SPLN and PPLN laboratories, RCPAQAP results 

from each cycle were calculated as a relative bias value, with a bias score of 0.0 

representing exact agreement with the RCPAQAP target value. 

Preliminary RF modelling attempted to predict the three individual regions via their NATA 

profile, but showed poor results with a 98% error in predicting Region 3 (due most likely to a 

smaller sample size), and single decision trees not including this region in the ultimate model 

predictions (results not shown). For the next phase of recursive partition modelling, the NATA 

results for Regions 2 and 3 were combined, which resulted in two NATA classes of similar 

profile in terms of sample size, and the numbers of minor conditions and observations (Table 

14). Therefore, the foundation of machine learning investigations of these data was not 

based on different profiles of NATA reports (present or absent, above or below the median), 

and thus cannot answer the questions on definitions of NATA performance. By using SPLN 

region as the response class allows us simply to determine which of the PoCT markers are 

most important when assessing the RCPAQAP - NATA quality control systems. 
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Figure 10 - Single decision tree (recursive partitioning) model of four PoCT RCPAQAP markers 

(Troponin I, pCO2, serum creatinine, and blood glucose) in a model using NATA results from three 

SPLN regions as the response of interest. Rpart R decision tree model (method = "class", minimum 

splits per tree = 30, complexity parameter (cp) = 0.016). 

 

 Figure 10 and Table 15 summarise results from decision trees that examined 

predictors of SPLN region (region 2 and 3 combined as one region, versus region 1). The 

resulting decision tree had each RCPAQAP marker represented, with the model assigning 

variable importance as pCO2, Glucose, TnI and Creatinine, in descending order (Table 15). 

Prediction accuracies of 80% were achieved for both Region 1 and Region 2, with both 

involving pCO2 at the terminal decision node (Table 15). However, these accuracies were 

calculated from a small number of cases (12 and 18 respectively), so predictive value may 

be compromised. 

 Similar to the examination of RCPAQAP marker bias distribution by histogram (Figure 

9), the four PoCT markers investigated by decision tree were similarly plotted as frequency 

histograms (Figure 11). Creatinine, glucose and pCO2 showed relatively tight clustering 

around the perfect bias score of 0.0, with distribution balance generally found on each side of 

0.0. This trend was noted also for troponin I (TnI), but with a notable difference in distribution 

around 0.0 bias (Figure 11d). 

|
Bias_pCO2>=0.0907

Bias_TNI< -0.2772

Bias_Gluc>=-0.0401

Bias_pCO2< 0.06265

Bias_Creat< -0.05525

Bias_Gluc< -0.01905

Bias_pCO2>=0.05415

Region 1

10/0

Region 1

25/11

Region 1

18/8

Region 1

18/7

Region 1

8/2

Region 2

229/258

Region 2

3/12

Region 2

8/21
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 TnI had a standard deviation approximately ten-fold greater than the other markers, 

which can be observed on the x-axis of the TnI plot. On inspection of the raw data, TnI 

RCPAQAP often showed success at detecting exactly the RCPAQAP target value (hence, a 

bias score of 0.0), particularly for target values < 0.1, whereas for larger target values (> 1.0) 

pronounced target misses were seen that reflected bias results of > 0.1. In short, for TnI 

achieving perfect RCPAQAP results was common for small target values, whereas more 

variation was seen for higher RCPAQAP targets, although probably not clinically significant. 

For a future TnI study, it may be worthwhile to run another investigation on only high 

RCPAQAP target values, while for small concentration TnI results, simple inspection of the 

data may suffice, with a simple count of how many times the target value was achieved over 

the RCPAQAP cycle recorded. 

 

TABLE 15 - Summary of the SPLN - Point of Care Test (PoCT) decision tree model presented in 

Figure 10 (SPLN Region Class prediction: n= 638 - Root and terminal nodes only). 

 
Split 

 
n 

 
loss 

 
y - value 

y - probability 

Correct Incorrect 

Root 638 319 Region 1 0.500  0.500 

TnI < - 0.2772 36 11 Region 1 0.694 0.306 

pCO2 < 0.05415 487 229 Region 2 0.530 0.470 

Gluc < - 0.0191 25 7 Region 1 0.720 0.280 

Gluc < - 0.0401 29    8 Region 2 0.724 0.276 

pCO2 > 0.0542 10 2 Region 1 0.800 0.200 

pCO2 > 0.0627 15 3 Region 2 0.800 0.200 

PoCT markers (TnI, pCO2, creatinine, glucose) represent terminal split values calculated as relative bias scores, 
where accuracy values are determined by the model. 
Variable importance (Weighted value: Arbitrary scale) - pCO2 (48); Glucose (26); TnI (15); Creatinine (10). 

Conclusions (SPLN - PoCT) - Firstly, the investigation of PoCT in the context of NATA 

inspection results and associated RCPAQAP performance could not be conducted in the 

same style as for PPLN and SPLN laboratories. The SPLN regions examined had similar 

NATA report profiles, so RCPAQAP predictions of NATA outcomes could not be examined 

(for a NATA performance focus, more PoCT results of greater NATA diversity will be 

required). However, an assessment of the value and “importance” of RCPAQAP PoCT 

predictors was possible, with some nuances of TnI PoCT revealed for future consideration. 

 The recursive partitioning and histogram results sit in the context of NATA inspections 

with no Condition reports, but some Minor reports (Table 14). The feedback from NATA 

assessors uncovered themes of understaffing and issues with the presumably recent 
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POCelerator platform. Given these comments, PoCT systems supporting the three regions 

involved are operating well. 

 As specific advice from the recursive partitioning analyses, a deeper examination into 

pCO2 PoCT may be warranted, as well as the suggested deeper investigation of TnI 

variation. The volatility of blood gases during collection and measurement most likely 

explains the consistent recursive partitioning results of pCO2 as the top-ranked predictor of 

PoCT region, further suggesting that future studies also involve pH evaluations. As 

emphasised earlier, the detected variation does not reflect NATA performance, for the 

reasons previously stated, but differences between SPLN regions indicated the most labile 

PoCT markers. In the context of this situation, the importance of individual EQA assessment 

for those sites must be considered since the current NATA monitoring at the regional level 

may obscure poor performance (11). 

 Given these overall conclusions, it may be worthwhile to reconsider the quality 

assurance process pertaining to PoCT; in other words, assess the RCPAQAP performance 

against the NATA assessment of the entire laboratory network. The benefits of this approach 

could involve, for example, avoiding the use of out-of-date PoCT cartridges. Presumably this 

example of operator error may be obviated by consideration of broader laboratory NATA 

feedback that evaluates management practices (including reagent etc ordering processes). 

 As explained above, many of the PoCT RCPAQAP results achieved a level of 

accuracy in obtaining a 0.0 relative bias target that it was obvious via simple inspection of the 

raw results. In conversations with experts who formerly managed laboratory and PoCT 

networks, the responsibility for PoCT operations often falls to the “best operators” from the 

laboratory staff (personal communication), which may explain the higher performance noted 

anecdotally. Regardless of the operator expertise, complex systems, like a pathology 

laboratory network, are still prone to management failures and/or simple oversights. Hence 

the recommendation on assessing the entire laboratory function, not only that pertaining 

directly to PoCT, may improve the system further. 
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(a)  Mean = - 0.0064 ± 0.0552 

 

(b)  Mean = 0.0013 ± 0.0240 

 

(c)  Mean = 0.0045 ± 0.0368

 

(d)  Mean = 0.0017 ± 0.2934

 

Figure 11 - Frequency histogram plots of selected RCPAQAP (Bias) predictors of NATA Class 

categories associated with State Region, from the SPLN PoCT network. The x-axis represents the 

distribution of cases across the range of analyte biases calculated for the following markers - (a) 

pCO2; (b) blood glucose; (c) serum creatinine; (d) Troponin I. N = 638 RCPAQAP tests of PoCT 

performance over 12 cycles. Note the wider x-axis scale for Troponin I. 

 

(4) Conclusions and Discussion (Including Benefits Pathology Stakeholders) 

The profile of NATA results was very different for PPLN in comparison with SPLN, so a direct 

juxtaposition between the PPLN models and SPLN was not possible. However, the resulting 

analyses did draw attention to the potential to adjust NATA - RCPAQAP models according to 

the number and diversity of NATA reports. In spite of this difference, predictive NATA - 

RCPAQAP models were developed for serum electrolyte and creatinine markers, and liver 

function tests profiles, for both pathology networks. 

 To summarise, the following integrated NATA-RCPAQAP models are proposed for 

PPLN and SPLN. 

 To note for these summaries is that all RCPAQAP predictors were transformed to an 

individual bias result prior to machine learning, modelling, and other analyses (see Methods). 

C (Conditions), M (Minor) and O (Observations) are the definitions for the categories of 

NATA reports captured in the NATA Class responses referred to (Methods - PPLN NATA 
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Classes = Yes or No (i.e. reports present or absent). SPLN NATA Classes = High or Low 

(i.e. reports above or below the median C or M reports for all laboratories). 

 Also, of interest is the primacy of GGT as a predictor, including in the context of 

electrolyte/creatinine RCPAQAP markers. The reason behind the success of GGT (bias) as a 

RCPAQAP predictor was explored in Results section (e). 

 

Therefore, considering all project results, the following predictive models are proposed: 

 

(a) PPLN 

(i) Electrolytes - For the prediction of PPLN laboratories that recorded C, M reports or 

Observations (CMO Class “Yes”) → (RCPAQAP Predictors) = Calcium (Ca++) + Phosphate 

(PO4) + gamma (- glutamyl transferase (GGT). Calcium prediction threshold calculated as 

> or < 0.0017 (relative bias) to predict NATA Class, supported by a GGT range of - 0.05 to - 

0.20, with phosphate at a range of approximately - 0.05 to 0.10. 

 This result must be interpreted with caution as measures of model robustness 

(McNemar’s, Kappa, Rand Index) were generally poor. More data from PPLNs are needed to 

increase predictive (NATA) model performance. 

 

(ii) LFTs - The first point to note is that GGT was a poor RCPAQAP predictor for PPLN-LFTs, 

contrary to other results. 

 For the prediction of PPLN laboratories that recorded M reports (M Class “Yes”) → 

(RCPAQAP Predictors) = Lactate Dehydrogenase (LD) + Aspartate aminotransferase (AST) 

+ Albumin or Alkaline Phosphatase (ALP). Optimal ALP values ranged from - 0.20 to 0.02, 

supported by AST ranges less than 0.0. The tightest LD ranges (< - 0.02) for NATA M Class 

prediction were at ALP 0.0 to 0.02 (Figure 4). 

 Improved McNemar’s statistic results (RF) and Rand Index (SVM) suggested robust 

predictions, with higher prediction accuracies found for RF models of M Class prediction. 

Kappa values improved, but did not exceed 0.40, indicating poorer performance (Table 8). 

 

(b) SPLN 

(i) Electrolytes - As noted, GGT has an interesting synergy with RCPAQAP electrolyte 

results, which we have reported previously (2), and which was validated again with increased 

prediction accuracy found when including GGT in the SPLN electrolyte/creatinine model to 

predict NATA M Classes (Table 11). Again, the best models were found when predicting 

NATA M Class only (not total C + M). Therefore, the proposed integrated NATA - RCPAQAP 

model involves GGT, creatinine and sodium bicarbonate. GGT and creatinine bias thresholds 

are > or < 0.0128 and > or < 0.024 respectively, with broad bicarbonate ranges (< - 0.20 to > 

0.20). Therefore, while bicarbonate supports the predictive model, GGT and creatinine 
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provide the fine-tuned decision thresholds (Figure 6). RF modelling provided the most robust 

models and highest accuracies (Tables 10 and 11), with increased kappa values and non-

significant (p > 0.05) McNemar’s statistic. Predictive values were > 70%, suggesting a model 

that after additional calibration could be useful for quality evaluation in the short term. 

 

(ii) LFTs - Predictions of M or C NATA Classes alone showed some value, with respectable 

prediction accuracies and model robustness revealed (Table 12). Ultimately, the NATA M 

Class prediction produced a “deeper” decision tree model involving GGT, ALT and AST as 

the foremost predictor variables. Decision tree thresholds ranged between (+) 0.01 to 0.07 

(Figure 7). Further analysis by SVM showed that prediction of low M Classes (coded on the 

plots as “0”), the optimal AST range was - 0.15 to 0.15, with GGT ranges > 0.15 for the AST 

range of - 0.15 to 0.0. An AST of 0.15 saw GGT ranges < 0.0, where ALT was mostly less 

than 0.0. ALT was mostly > 0.0 relative bias at AST values of - 0.15 to 0.0. 

 Assessment of the model accuracy and robustness by caret again showed best 

performance through RF (recursive partitioning) with prediction accuracies > 70% (NATA M 

Class), predictive values > 70%, and reasonable robustness as indicated by Kappa and 

McNemar’s statistics (Table 13). Again, with extra data and optimisation, a useful integrated 

NATA-RCPAQAP model could be available soon. 

 

(c) Conclusions (Machine Learning Predictive Models) 

GGT featured strongly in the predictive modelling, which may be of value to a linking of UEC 

and LFT RCPAQAP results into a general model of NATA integration. Therefore, a future 

study is required to develop models with a central GGT role, in combination with the best 

UEC and LFT RCPAQAP markers identified here. Consideration of routine haematology 

markers may also be useful to enhance model performance. A study of the full blood count 

(FBC) markers haemoglobin (Hb), red cell distribution width (RDW), white cell count (WCC) 

and platelet count (Plt) from the SPLN found that RDW was the best predictor of NATA Class 

(Results not shown - The PPLN did not provide FBC data, so a full study on PPLN versus 

SPLN comparisons was not possible on this occasion). 

 The SPLN also provided RCPAQAP data for special tests, for example drugs and 

antibiotics, but these had limited sample sizes and were not suitable for machine learning 

investigations. In general, therefore, routine chemistry and blood markers are the best option 

for developing integrated quality models to assist laboratories monitor and diagnose 

performance issues, in collaboration with the RCPAQAP and NATA. 

 On surveying the pathology quality literature since 2017, only one reference was 

found that included the concept of computer-based systems to improve ISO 15189 

compliance, which was described in the context of training (12). There is discussion in the 
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literature on the application of AI (Artificial Intelligence) in the context of healthcare broadly 

(13) that will have some relevance and benefit to pathology. 

(NB: The pre-2017 ISO 15189 and associated quality literature was reviewed and reported 

previously - see references 2 and 3). 

 As previously concluded (2, 3), the state-of-the-art recommendation for improving 

laboratory quality was to use root-cause-analysis, with the application of machine learning 

and AI approaches to quality data not proving popular within the field. This presents an 

opportunity for the Australian  RCPAQAP and NATA to lead the world in the development of 

the inevitable introduction of AI and Big Data into laboratory medicine. This and previous 

QUPP - funded projects (2, 3) have demonstrated that machine learning algorithms (as a 

feature of “AI”) can separate complex, integrated data and results into patterns that are able 

to be interpreted and the results applied to laboratory practice. As a data-driven strategy, 

more data is required to achieve enhanced predictive, integrated models. 

 In terms of the data required for RCPAQAP - NATA quality projects, we found two 

distinct modelling strategies that relied on the diversity and quantity of NATA results. PPLN 

had fewer NATA reports in comparison with SPLN - for example, only 2 Conditions were 

reported for PPLN laboratories, while SPLN had 128 Conditions. The number and diversity of 

NATA reports explains why the SPLN models were more robust, since variation in the data, 

like for statistical methods, is required to accurately determine the separation of points in a 

model, and thus provide predictive estimates. To solve the problem of narrower NATA results 

found for PPLN (only in the context of research models, not practice), more laboratories are 

required for investigation via the integrated machine learning models presented herein. While 

the SPLN models featured better predictive accuracies, sensitivities/specificities and 

positive/negative predictive values, the kappa results suggest that a larger sample size also 

will be beneficial in relation to model reliability. 

 The issue of NATA results diversity was also associated with the PoCT study, which 

had a limited range and variety of data. In spite of this, our investigation demonstrated that 

pCO2 and TnI are PoCT markers that need further consideration. 

 

(d) Point-of-Care Tests 

As presented above, the PoCT investigations mirrored the situation of the PPLN in that 

NATA C and M reports were scarce, limiting the extent of an integrated model. Therefore, the 

recursive partition models of PoCT that explored RCPAQAP relative bias to explain NATA 

reports could examine only general variation associated with regional differences within the 

SPLN. As recommended earlier in the report, there are features of pCO2 and TnI that require 

further investigation, including the further consideration on PoCT blood gas analysis. Within 

this scope, consideration of the interpreting RCPAQAP point-of-care results via the overall 

NATA performance was proposed. 
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 In discussing the ramifications of an alternative approach to NATA reporting on 

NPAAC guidelines, we need to consider Aim 3(c) - “Using a small subset of the PoCT sites, 

use the NPAAC - PoCT Guideline as an assessment guide to assess whether there are 

associations between failed Clauses, QC or EQA and performance”. 

 

In summary, there were no “failed Clauses”, but opportunities for improvement can be 

recommended based on the wider consideration of the results presented. 

 

 In the case of PoCT sites, these are often numerous with many operators using the 

devices. This complexity makes the conventional model of onsite assessment more 

problematic in identifying opportunities for targeted improvement. EQA should look at the 

entire testing process, not just the analytical aspect, and this is particularly true with PoCT 

where the device is usually reliable, but operator effects, such as competence, out of date 

cartridges, and problems with reporting, can result in poor patient outcomes (for example, 

where cartridge QC and EQA sample analyses are performed by experienced staff, in an 

attempt to conceal the poor performance of other operators). Also, the network is large and 

involves many small sites performing PoCT with multiple operators, leading to 

communication and management control difficulties (14). 

 In this context, the following NPAAC Clauses are most relevant to future revisions 

that may address the above recommendation (15) - 

 

 G1.1; 

 G1.4 (Sub-clause C1.4(i) - sections (a - h); 

 G1.5 (Sub-clauses C1.5(i) and C1.5(ii); 

 G5.1 (a - k); 

 G6.3. 

Full definitions available in Appendix F. 

 

It is interesting to note that reports on the application of PoCT in the Australian context 

appeared from 2005, focussed, for example, on the challenges of optimising tests for 

General Practice, and remote and rural settings (16 - 18). 

 

(e) Benefits for Pathology Stakeholders 

The benefits of integrated models incapsulating results from the primary quality assessment 

programmes, NATA and RCPAQAP (EQA), are largely self-evident. Predictive decision 

thresholds and associated metrics, like those presented here, allow NATA and RCPAQAP 

results to interact (and vice versa), thus offering opportunities for the earlier detection of 

quality control issues. Also, the recursive partitioning and SVM algorithms can be introduced 
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into laboratory IT systems to assist with the detection of problems as they arise. Machine 

learning relies upon the training and testing of data, so as data builds in the system, so too 

will the capacity to optimise decision support for specific compliance challenges. 

 The NATA assessment process involves an onsite assessment of the laboratory 

quality system activities against the ISO 15189 and NPAAC Standards. This is usually a very 

detailed and expensive process involving both NATA staff and peer assessors. Developing a 

risk-based approach to the onsite assessment process would be useful for both NATA and 

the laboratories concerned. Identifying laboratories at risk sooner could allow a more 

targeted approach by NATA.  

 In the case of a laboratory network, the use of a model that identifies laboratories 

within the network where some additional resources could be usefully deployed to improve 

quality is an obvious advantage to the network, by quickly assisting in the identification of 

sites where an intervention will reduce error. 

 

(f) Recommendations 

Taken as a package, the results presented herein provide direction on integrating NATA 

inspection results with the outcomes from the RCPAQAP process, and reveals details on 

what aspects of the models were most predictive of laboratory performance. This was 

required since the ranking of laboratory RCPAQAP laboratory performance by percentile 

(and CV%), overall bias or standard deviation did not reflect NATA performance, as 

summarised by Conditions (C) or Minor conditions (M), at an aggregated level. 

 Therefore, in designing an integrated quality assessment model (and eventually 

system) for the timely detection of problems encountered by pathology laboratories that 

impact result quality, the following are recommended by the results of this project - 

 

1) Convert RCPAQAP data for all analytes and time points to a relative bias value, prior to 

analysis and modelling (see Methods - not a general laboratory bias value, but bias 

associated with each RCPAQAP marker at each time point of the cycle); 

2) Plot RCPAQAP bias results from each time point over the entire test period as a histogram 

and examine these plots for a bimodal distribution, with peaks each side of bias 0.0 (e.g., 

GGT). Plots can be skewed towards a negative or positive relative bias, and this was noted 

when separating results into B or G laboratories, and C or M NATA Conditions. This pattern 

was associated with the best QAP predictors of NATA classes (PoCT showed plots 

approximating a normal distribution, with 0.0 relative bias as the mean); 

3) For categories (classes) of NATA performance, use the median of Minor (M) condition 

counts to determine High or Low classification of laboratories for modelling (namely, counts 

above the median are assigned the High category, whereas below the median are Low; 
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4) For aggregated results with fewer C, M or O NATA reports, count all conditions (C or M) 

and observations (O), and classify laboratory classes according to a presence or absence of 

these NATA inspection results; 

5) Conduct Random Forest (RF) modelling initially to rank RCPAQAP predictors of NATA 

Class, post tuning and assessment via the R caret package. Use single decision trees (30 

trees, complexity parameter (cp) tuning required) and Support Vector Machines (SVM) to 

detect and define broader patterns of NATA Class prediction, as well as determine decision 

boundaries/thresholds; 

6) Embed these rules into pathology quality control systems, and further tune these 

parameters via exposure to ongoing NATA and RCPAQAP results.  

 (g) Future Research 

A deeper study is required to assess PoCT integrative modelling via NATA and RCPAQAP 

results. This study demonstrated that a model can be developed in relation to variation 

between pathology network regions, but the NATA results were sufficient to adequately 

integrate the RCAPQAP results with the NATA reports. As recommended, assessing PoCT 

in relation to overall laboratory function, as captured by NATA, may assist in this regard. In 

spite of this limitation, the project was successful in identifying as necessary further 

investigations of blood gases and TnI; for both future studies, considerably more data will be 

required for interrogation. 

 Similar to the PoCT results, the investigation of the PPLN was partly constrained by 

the small number of C and M conditions for the laboratories in the sample provided for 

investigation. In terms of practice, this is an excellent outcome. For research, however, the 

reduced variation in the NATA classes lead to predictive integrated models that were not 

reliable, according to statistical measures of machine learning model robustness, for 

example, the Kappa statistic and Rand Index. This research challenge can be overcome via 

the provision of more data from larger laboratory samples. 

 The SPLN provided NATA profiles of sufficient C and M variation to allow the 

development of relatively robust models via machine learning algorithms; for example, 

predictive values of NATA Class prediction greater than (>) 70%. More data will help 

optimise these predictive models, but they could be trialled for a working laboratory situation 

in the near future, if desired. 
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(6) Appendices 

Appendix (A) 

Summary - Evaluation of the Activity against the Performance Indicators 

What are the key milestones for this project that will identify 
that you have achieved the objectives of the project? 

Milestone Status:   Nov 2017 
- May 2020 

 

Compile, clean and create data pattern rules from PPLN and SPLN data, 
as well as troponin TAT studies 

Achieved. 

All data compiled, cleaned and 
pattern rules designed for B and G 

laboratories. Troponin data not 
provided for SPLN or PPLN.  

 

Develop rules for the prediction of PoCT quality utilising data from the 
SPLN 

Achieved. 

PoCT data from 3 SPLN regions 
obtained, and an integrated NATA-
RCPAQAP PoCT predictive model 

established. 

 

 

Publish results and findings in peer-reviewed journals and other literature 

Partly achieved. 

One paper published (Ref 3). 

1 - 2 papers in preparation (1 x 
experimental publication + 1 x 

review planned). Submission by 

the end of July 2020 intended. 

 

Appendix (B) 

Laboratory rankings in relation to NATA reports - Private Pathology Laboratory Network 

(review in conjunction with Table 1) 

Appendix (C) 

Private Pathology Laboratory Network NATA profile (Conditions and comment details) 

Appendix (D) 

Laboratory rankings in relation to NATA reports - State Pathology Laboratory Network 

(review in conjunction with Table 2) 

Appendix (E) 

Machine Learning Ensemble investigations, and examples of Support Vector Machine models 

Appendix (F) 

Summary of NPAAC Point-of-Care-Testing Guidelines. 

 

Appendices B - F are attached separately 


