
 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 1 

 

The future of breast 
screening 
A literature review of emerging technologies in breast cancer screening 

Final report: 30 May 2018 

 

 



 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 2 

 

 

Allen + Clarke has been  
independently certified as 
compliant with ISO9001:2015 
Quality Management Systems 
 

 
Document status:  Final 
Version and date: Final 30 May 2018 
Author(s): Stuart Beresford, Jacinta Cording, Anna Gribble, 

Jack Haddow, Anna Scanlan, Esther White 
Filing Location: W/Department of Health/BreastScreen 

Australia/Horizon Scan 
Peer / technical 
review: 

Dr Robyn Haisman-Welsh 

Verification that QA 
changes made: 

Anna Gribble 

Proof read: Anna Gribble, Esther White  
Formatting: Jo Evans  
Final QA check and 
approved for release: 

Anna Gribble 



 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 3 

 

CONTENTS 

 

KEY TERMS 4 

GUIDANCE ON READING THIS REPORT 6 
 

KEY FINDINGS 7 

DASHBOARD 18 
 

INTRODUCTION 19 

METHODOLOGY 21 
 

BIOMARKERS 27 

1. BLOOD TESTS 28 

2. SALIVA TESTING 36 
 

IMAGING MODALITIES 41 

3. AUTOMATED WHOLE BREAST ULTRASOUND 42 

4. CONTRAST ENHANCED MAMMOGRAPHY 50 

5. DIGITAL BREAST TOMOSYNTHESIS 58 

6. DUCTOSCOPY 67 

7. MAGNETIC RESONANCE IMAGING 71 

8. MICROWAVE IMAGING 87 

9. MOLECULAR BREAST IMAGING 94 

10. SPECTROSCOPY 101 

11. THERMOGRAPHY 107 

12. TOMOGRAPHY 114 
 

READING STRATEGIES 128 

13. COMPUTER AIDED DETECTION 129 

14. ARTIFICIAL INTELLIGENCE 146 

15. TELE-MAMMOGRAPHY 152 
 

REFERENCES 157 

  



 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 4 

 

KEY TERMS 

 

ABUS  Automated breast ultrasound 

AI  Artificial intelligence 

AHMAC  Australian Health Ministers’ Advisory Committee  

BIRADS Breast Imaging Reporting and Data System 

BSA  BreastScreen Australia 

CADe  Computer-aided detection  

CADx  Computer-aided diagnosis 

CBBCT  Cone-beam breast computer tomography 

CC  Craniocaudal (view) 

CDMAM Contrast detail mammography  

CE-CBBCT Contrast-enhanced-cone-beam breast computer tomography 

CEM  Contrast enhanced mammography 

CESM  Contrast enhanced spectral mammography 

ctDNA  Circulating tumour DNA  

CTC  Circulating tumour cells  

CT  Computer tomography 

CEM  Contrast enhanced mammography  

CDR  Cancer detection rate 

DCIS  Ductal carcinoma in situ 

DBT  Digital breast tomosynthesis 

DM   Digital mammography 

EIT  Electrical impedance tomography 

FDG-PET Fluorodeoxyglucose positron emission tomography 

FFDM  Full-field digital mammography 

HHUS  Hand-held ultrasound 

LCIS  Lobular carcinoma in situ 

MGD  Mean glandular dose 

mGy  Milligray 

mSv  Millisievert 

MI  Microwave imaging 

MBI  Molecular breast imaging 
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MLO  Mediolateral oblique (view) 

MMU  Mobile Mammography Unit 

MRI  Magnetic resonance imaging 

NPV  Negative predictive value 

OCT  Optical coherence tomography 

PACS  Picture archiving and communication systems 

PET  Positron emission tomography 

PPV  Positive predictive value 

RCT  Randomised control trial 

s2DM  Synthesised two-dimensional mammogram 
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GUIDANCE ON READING THIS REPORT 

This report presents findings on two biomarkers, ten imaging modalities and three reading 
strategies that may have an application for the early detection of breast cancer in a population-
based screening environment. Each technology or technique is described in a chapter and, for 
each, we answer the following questions (where information is available): 

• What is the technology or innovation? 

• What stage of development or trial are the new tests at? 

• What are its considered potential clinical value in five years? In 10 years? 

• Does this innovation show high sensitivity and specificity? 

• Is there evidence that this innovation is more acceptable to women (in general and by 
ethnic group) compared to digital mammography? 

• What cost and safety findings have been reported?  

• Does this technology reduce deaths due to breast cancer through early detection? 

• Has this test been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

• Has a national position statement been published about this innovation, and if so, what 
is the position? Is there consensus in position statements? 

Sensitivity and specificity are only discussed for those technologies that have clinical application 
(i.e., not those that are only in early experimental phases). 

Information responding to each question is presented in an evidence hierarchy (i.e., data from 
systematic reviews is presented first, followed by information from randomised controlled 
trials, prospective studies, retrospective studies, and grey literature.  

The information about digital breast tomosynthesis (DBT) included in this horizon scan has 
been summarised from another literature review completed by Allen + Clarke on the role of DBT 
in screening healthy women for breast cancer. This work was completed concurrently to the 
horizon scan literature search and review.  
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KEY FINDINGS  

The Department of Health engaged Allen + Clarke to undertake a horizon scan literature review 
to identify new and emerging technologies likely to impact population-based breast cancer 
screening of asymptomatic women and the BreastScreen Australia (BSA) program. This report 
presents the findings from the literature review. 

Methodology 

Allen + Clarke completed a systematic search of the Ovid Medline, CINAHL, Embase, ProQuest 
and Scopus databases as well as searches of health technology assessment and clinical trial 
databases. We used combinations of subject/index terms as appropriate to the search 
functionality of each database (eg, exploded term ‘mammography’ or exploded ‘breast 
neoplasm’ in combination with key words, or key words alone). Primary studies already 
incorporated into high-quality systematic or literature reviews were reviewed but not assessed 
unless additional relevant material not described in the review was included. The methodology 
underpinning the chapter on DBT is described in Allen + Clarke’s literature review on DBT in 
screening. 

Results 

The technologies and innovations described in this report are: 

• biomarkers (blood and saliva testing) 

• innovations to existing imaging technologies that are already used in either breast 
cancer screening, assessment or diagnosis (such as mammographic techniques like 
contrast enhanced mammography and DBT, MRI or ultrasound) 

• new imaging technologies (like molecular breast imaging, spectroscopy), and 

• new ways of reading or interpreting images (computer-aided detection, artificial 
intelligence, and tele-mammography). 

For two innovations reviewed – ductoscopy and thermography – there appears to be a clear 
acceptance that they will not have a role in future breast screening programs due to issues with 
relatively poor sensitivity and specificity compared to full-field digital mammography (FFDM) 
and/or low acceptability to women and health professionals. 

The following technologies are likely to be of interest to breast screening programs: automated 
whole breast ultrasound, computer-aided detection/AI and DBT. 
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BIOMARKERS 

Blood testing 

• Five studies discussed blood testing for the early detection of breast cancer in 
asymptomatic women. 

• The use of blood testing in breast cancer screening of asymptomatic women is still in 
the early stages, with much of the research focus being on identifying promising 
biomarkers that demonstrate sufficient sensitivity and specificity to support their use 
in further clinical testing. Research is most advanced concerning the use of microRNA 
in screening. 

• There is no indication of the timeframe in which the full clinical potential of blood 
testing for breast cancer detection will be realised; however, preliminary results from 
primarily retrospective studies are promising and the technology is improving rapidly.  

• Blood testing has not been incorporated into any national screening programs, nor are 
there any national position statements that have been released on their use in breast 
cancer screening. 

• Current research is not sufficient to be able to identify whether blood biomarker 
testing is able to reduce deaths due to breast cancer through early detection. 

Saliva testing 

• Nine studies discussed saliva testing for the early detection of breast cancer in 
asymptomatic women. 

• The use of saliva testing in breast cancer screening of asymptomatic women is still 
early stages, with much of the research focused on identifying promising biomarkers 
that are specific to breast cancer, and which can detect breast cancer with sufficient 
sensitivity and specificity to support their use in further clinical testing (including 
prospective studies and RCTs). Current research is limited to retrospective studies 
comparing samples from breast cancer patients with healthy controls. 

• There is currently no indication of the timeframe in which the full clinical potential of 
saliva testing for breast cancer detection will be realised; however, preliminary results 
from retrospective studies are promising, with studies routinely finding sensitivity and 
specificity rates over 80%, or even over 90%, for a range of saliva biomarkers.  

• Saliva testing has not been incorporated into any national screening programs, nor are 
there any national position statements that have been released on their use in breast 
cancer screening for asymptomatic women. 

• Current research is not sufficiently advanced to identify whether saliva biomarker 
testing is able to reduce deaths due to breast cancer through early detection. 

IMAGING MODALITIES 

Automated whole breast ultrasound 

• Nineteen studies discussed automated breast ultrasound (ABUS) for the early 
detection of breast cancer in asymptomatic women. 
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• ABUS is already in clinical use for breast cancer screening in the United States and 
Canada. There is no evidence to suggest that ABUS has been implemented into a 
national screening program at this stage. 

• The potential clinical value of ABUS in five to 10 years is not explicitly discussed in the 
literature, although findings have indicated its value as an adjunct screening tool for 
women with denser breasts. 

• Many studies have found that using ABUS and FFDM leads to significantly higher 
cancer detection rates for women with denser breasts than using digital 
mammography alone. 

• ABUS is likely to be highly acceptable to women as no safety issues have been 
identified and the examination process involves less discomfort than other modalities, 
including digital mammography. 

• There is no evidence that ABUS reduces deaths due to breast cancer through early 
detection. 

• ABUS has not been incorporated into any national breast screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women. 

Contrast enhanced mammography 

• Twenty studies discussed contrast enhanced mammography for the early detection of 
breast cancer in asymptomatic women. 

• The use of CEM in population-based breast cancer screening of asymptomatic women 
is seen to have some potential in clinical studies, and there are current clinical trials 
related to CEM, including with a focus on screening. 

• There is currently no indication of the timeframe in which the full clinical potential of 
CEM for breast cancer screening will be realised; however, results from prospective 
clinical studies show that CEM reports higher percentages of sensitivity, specificity, 
positive predictive value and negative predictive value than conventional 
mammography. 

• Current research is not sufficient to be able to identify whether CEM as a breast 
imaging tool is able to reduce deaths due to breast cancer through early detection. 

• CEM has not been incorporated into any national breast screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women. 

Digital breast tomosynthesis 

• The Department of Health commissioned Allen + Clarke to undertake a literature 
review on the use of DBT in screening. The results of this literature review are 
included in this report for completeness. Further detail on the methodology is 
contained in Allen + Clarke’s primary literature review document. 

• There is strong evidence that both FFDM + DBT and DBT + s2DM provide superior 
performance for improved cancer detection and that DBT may be a more sensitive test 
than FFDM alone. The magnitude of improvement in CDR may be affected by reading 



 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 10 

 

strategy (eg, double reading approaches result in higher detection rates compared to 
single reading).  

• There is emerging evidence that, used as an adjunct screen to FFDM, DBT can reduce 
recall rates and false positives results compared to FFDM alone; however, some 
inconsistent results between large prospective trials are reported. These differences 
may reflect the already low rates of recall seen in some population-based screening 
programs in which the trials are embedded, or different reading or arbitration 
strategies. Further research investigating comparative performance of FFDM and DBT 
will help to unpick areas of uncertainty including the impact of double/single reading 
strategies and the impact of access to previous DBT images.  

• While DBT improves breast cancer detection with (potentially) lower rates of recall 
than FFDM alone, there is insufficient evidence about the long-term mortality benefit 
to support the use of DBT alone as a primary screening test. Current research is not 
able to identify whether DBT as a breast imaging tool reduces deaths due to breast 
cancer through early detection. 

• Few studies identified for this literature review investigated DBT alone compared to 
FFDM alone, although literature exploring different ways to integrate DBT into 
screening continues to develop quickly. Further research may also help determine 
which combination of approaches (FFDM + DBT, two-view DBT + s2DM, DBTMLO + 
FFDM, or some form of DBT alone) achieves the best balance between radiation dose, 
sensitivity and specificity. 

• DBT has not yet been incorporated into any national screening programs; however, 
fully-paired trials embedded in population-based screening programs have been 
completed or are underway. In addition, DBT is available for private breast screening 
in several jurisdictions including Australia and New Zealand. 

Ductoscopy 

• Two studies discussed ductoscopy for the early detection of breast cancer in 
asymptomatic women. 

• The role of ductoscopy in breast cancer screening of asymptomatic populations is not 
clear as most of the research focuses on its role in the assessment and diagnosis of 
ductal carcinoma in-situ (DCIS). For example, recent research focuses on the use of 
ductoscopy with symptomatic patients that present with nipple discharge.  

• There is no indication that ductoscopy will achieve clinical potential as a screening 
tool. There is little evidence to suggest ductoscopy is acceptable to women as a 
screening modality. 

• Current research is not sufficient to be able to identify whether ductoscopy as a 
screening procedure can reduce deaths due to breast cancer through early detection. 

• Ductoscopy has not been incorporated into any national breast screening programs, 
nor are there any national position statements that have been released on their use in 
breast cancer screening for asymptomatic women. 
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Magnetic resonance imaging 

• Sixty-six studies discussed MRI for the early detection of breast cancer in 
asymptomatic women. 

• The availability of MRI as a supplementary examination to mammography offers a 
clear clinical benefit in some situations, particularly women with a high risk for breast 
cancer, especially those with dense breast tissue. Compared to mammography, MRI is 
less specific but more sensitive to detect small tumours in subjects with high breast 
cancer risk. MRI is a non-invasive technique that gives extremely clear, detailed images 
of soft-tissue structures that other imaging techniques cannot achieve. Unlike 
mammography, MRI does not expose the tissue to ionising radiation and the 
contrasting agent used in MRI is less likely to produce an allergic reaction that may 
occur during the use of iodine-based substances in other imaging modalities. 

• MRI has not been recommended for the general population due to high false-positive 
rates (which can lead to over-diagnosis with attendant cost and anxiety), high cost, 
time consumption, lack of adequate number of units, the need for experienced 
radiologists and lack of clinical utility. Some cancers, such as DCIS, are better detected 
by mammography than by MRI.  

• MRI is expensive, and although not painful the patient must remain still during the 
examination, which was an issue for claustrophobic women. Data has also emerged 
indicating there can be accumulation of gadolinium in the brain in patients who have 
undergone multiple contrast-enhanced MRI studies. 

• MRI has not been incorporated into any national breast screening programs. The 
American Cancer Society and the European Society of Breast Cancer Specialists have 
both released statements on the use of MRI in breast cancer screening. 

Microwave imaging 

• Three studies discussed the use of microwave imaging for the early detection of breast 
cancer in asymptomatic women. 

• The use of microwave imaging in breast cancer screening of asymptomatic women is 
still in the early stages. Much of the research focus is on identifying feasible microwave 
imaging systems that demonstrate sufficient sensitivity and detectability to support 
their use in further clinical testing. Research is most advanced in the use of 
ultrawideband frequency systems. 

• There is currently no indication of the timeframe in which the full clinical potential of 
microwave imaging for breast cancer detection will be realised; however, preliminary 
results from clinical studies indicates that this technology has the potential for clinical 
use. 

• Current research is not sufficient to be able to identify whether microwave imaging as 
a breast imaging tool is able to reduce deaths due to breast cancer through early 
detection. 

• Microwave imaging has not been incorporated into any national breast screening 
programs, nor are there any national position statements that have been released on 
their use in breast cancer screening for asymptomatic women. 
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Molecular breast imaging 

• Thirteen studies discussed molecular breast imaging for the early detection of breast 
cancer in asymptomatic women. 

• Results from largely retrospective studies are promising regarding the effectiveness of 
MBI for screening purposes; however, more large-scale multi-centre prospective 
studies are required before conclusions can be drawn about the role of MBI in the early 
detection of breast cancer in asymptomatic women. 

• There is currently no indication of the timeframe in which the full clinical potential of 
MBI for breast cancer detection will be realised. High sensitivity and moderate 
specificity rates have been found in existing research, with improvements in the 
detection of sub-centimetre lesions. Rates of cancer detection are improved when MBI 
is used as a supplement to screening mammography. 

• Despite initial issues with radiation dosage, more recent MBI systems are 
demonstrating good detection ability with reduced effective radiation dosages 
(approximately 2.4 mSv). One study found that the cost of supplementing screening 
with MBI is higher per examination than for mammography alone, however combining 
MBI with mammography leads to a decrease in cost per cancer detected. 

• There is growing evidence for the increased efficacy of MBI for the early detection of 
cancer for women with dense breasts (BIRADS 3 or 4) compared with screening 
mammography, although these results may underestimate the impact of MBI for 
women with more dense breasts due to categorisation issues. 

• No specific information on the acceptability of MBI to women was identified; however, 
the average length of time for an MBI examination (40-45 minutes) is substantially 
longer than the length of time needed for a mammogram. 

• MBI has not been incorporated into any national screening programs, nor are there 
any national position statements that have been released on its use in breast cancer 
screening for asymptomatic women. 

• Current research is not sufficient to be able to identify whether MBI is able to reduce 
deaths due to breast cancer through early detection. 

Spectroscopy 

• Two studies discussed the use of spectroscopy for the early detection of breast cancer 
in asymptomatic women  

• The potential use of spectroscopic techniques in breast cancer screening of 
asymptomatic populations is not currently clear, with recent research focusing on 
developing and refining technology for clinical testing.  

• There is currently no indication of the timeframe in which the full clinical potential of 
spectroscopic techniques for breast cancer detection of asymptomatic people will be 
realised; however, results from clinical studies indicates that optical mammography 
has the potential for clinical use in high risk groups. Research and development into 
spectroscopy for breast cancer detection is emerging and advancing. 

• Current research is not sufficient to be able to identify whether spectroscopy as a 
screening procedure can reduce deaths due to breast cancer through early detection. 
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• Spectroscopic techniques have not been incorporated into any national breast 
screening programs, nor are there any national position statements that have been 
released on their use in breast cancer screening for asymptomatic women. 

Thermography 

• Nineteen studies discussed thermography for the early detection of breast cancer in 
asymptomatic women. 

• There is not a large body of evidence that supports the use of thermography as a tool 
for breast screening in asymptomatic women. Most studies use small sample sizes and 
the results vary significantly. Much of the research is focused on different methods and 
technologies for obtaining and interpreting thermographs rather than the actual use of 
thermography for a screening purpose. 

• Current research is not sufficient to be able to identify whether thermography is able 
to reduce deaths due to breast cancer through early detection. 

• Thermography has not been incorporated into any national screening programs. 
Importantly, national position statements discouraging thermography as a breast 
screening tool have been issued in the United States and Australia; however, these are 
often based on quite old literature and do not reflect the developments in the evidence 
that have occurred in more recent years. 

Tomography 

• Eight studies discussed tomography for the early detection of breast cancer in 
asymptomatic women, across five different types of tomography. 

Computer tomography (CT) 

• The development of breast CT systems for use in the early detection of breast cancer is 
still in its infancy, with only retrospective studies identified in the literature reviews. 

• There is currently no indication of the timeframe in which the full clinical potential of 
breast CT for the early detection of breast cancer in asymptomatic women will be 
realised. Although breast CT scanning can visualise breast lesions and masses as well 
as or better than mammography, breast CT scanning performs worse in visualising 
microcalcifications. This may limit the incorporation of breast CT as a primary breast 
cancer screening modality in screening for asymptomatic women. 

• Despite initial issues with radiation dose, more recent breast CT scanning systems are 
improving, achieving radiation dose levels comparable to conventional mammography. 
Additionally, cost is unlikely to be a barrier in the use of breast CT for the early 
detection of breast cancer. 

• Although no primary studies were identified, one review of the breast CT literature 
stated that breast CT could play an important role in breast cancer screening for 
women with dense breasts. 

• Findings suggest that breast CT is significantly more comfortable for women than 
mammography, primarily due to the lack of breast compression. 

• Current research is not sufficient to be able to identify whether breast CT scanning is 
able to reduce deaths due to breast cancer through early detection. 
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• Breast CT has not been incorporated into any national screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women. 

Cone-beam breast computer tomography (CBBCT) 

• The research assessing the use of CBBCT is still in the early stages, with research not 
yet advancing to clinical tests using asymptomatic samples. 

• There is currently no indication of the timeframe in which the full clinical potential of 
CBBCT for breast cancer detection will be realised. That said, current results using 
symptomatic samples are promising in terms of its ability to improve on FFDM. 

• Current research suggests that there is no statistically significant difference in 
radiation dose from CBBCT scans compared with FFDM. Findings related to the cost of 
CBBCT were not reported in the identified literature. 

• No studies were identified that assessed the performance of CBBCT scans in 
asymptomatic women with dense breasts, however results from symptomatic samples 
suggest that contrast-enhanced CBBCT may improve scan sensitivity for women with 
dense breasts compared with FFDM. 

• Reported patient comfort is higher for CBBCT than for mammography. 

• Current research is not sufficient to be able to identify whether CBBCT scanning is able 
to reduce deaths due to breast cancer through early detection. 

• CBBCT has not been incorporated into any national screening programs, nor are there 
any national position statements that have been released on its use in breast cancer 
screening for asymptomatic women. 

Positron emission tomography (PET) 

• Research into the use of PET for early breast cancer detection in asymptomatic has 
progressed to prospective clinical studies, however further research is still required on 
the safety and effectiveness of PET as a screening test. 

• There are no clear timeframes regarding the clinical potential of PET as a screening 
test being reached; however, current research suggests that there may still be 
limitations with the ability of PET to detect small tumours. 

• Relatively high levels of radiation continue to be an issue for PET systems, and cost is 
also identified as being potentially prohibitive to its incorporation into routine 
screening for asymptomatic women. 

• No information was identified on the sensitivity and specificity of PET for 
asymptomatic women with dense breasts or women who have had breast 
surgery/augmentation compared with FFDM. 

• No information was identified on the acceptability of PET for women compared with 
FFDM. 

• Results from a nationwide fluorodeoxyglucose PET (FDG-PET) cancer screening 
program in Japan found that FDG-PET had a sensitivity of 84% in detecting breast 
cancer; this was not significantly different from rates found for mammography. Issues 
with radiation dosage and the cost of FDG-PET scans were noted as a barrier for 
incorporation into other screening programs. 
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• Current research is not sufficient to be able to identify whether PET imaging is able to 
reduce deaths due to breast cancer through early detection of cancer in asymptomatic 
women. 

• There have been no national position statements released regarding the use of PET for 
the early detection of breast cancer in asymptomatic women. 

Optical coherence tomography (OCT) 

• The development of OCT systems for use in breast cancer screening is still in 
preclinical stages, with current systems only able to penetrate up to 2mm in most 
tissue. This means that most research into the use of OCT for cancer detection or 
diagnosis involves the use of either animal models or samples obtained via biopsies. 
Additionally, most of this research focuses on the use of OCT in treatment and 
diagnosis, rather than in screening.  

• Current research is not sufficient to be able to identify whether OCT is able to reduce 
deaths due to breast cancer through early detection of cancer in asymptomatic women. 

Electrical impedance tomography (EIT) 

• Research is still ongoing into the development of EIT systems that can image the breast 
with sufficient quality to accurately detect breast cancer. Some of these systems 
require breast compression for imaging, whereas others use a setup like breast CT, 
whereby subjects lay prone on an examination table with the breast hanging 
suspended through an opening in the table top. Because of the early stages of research 
in this area, there were no studies identified that used asymptomatic samples.  

• Current research is not sufficient to be able to identify whether EIT is able to reduce 
deaths due to breast cancer through early detection of cancer in asymptomatic women. 

READING STRATEGIES 

Computer-aided detection (CADe) 

• Fifty-seven articles discussed the use of CADe as a reading strategy for the early 
detection of breast cancer in asymptomatic women  

• CADe, applied as a complementary technology to mammography interpretation, 
prompts the reader to lesions on the mammogram. The reader then needs to decide 
whether to recall CADe-prompted findings.  

• Non-randomised studies have shown that CADe improves the sensitivity of a single 
reader, with an incremental cancer detection rate ranging between 1 and 19%. A 
limitation of CADe is that it also increases screening recall rate through a decrease in 
specificity. Studies have found that double-reading produces the same results as that 
for single reading with CADe, without the increased rate of recall. In terms of detecting 
lesion characteristics, good results have been observed for the detection of breast 
cancers presenting as microcalcifications. However, the rate of detection for 
circumscribed or spiculated masses and architectural distortions is not so positive. 

• To expand the clinical value of CADe in the detection of breast cancer, several studies 
have focused on improving technical stages of the CADe process. Promising results 
have been observed, particularly regarding the application of deep learning systems, 
but further work needs to be done. While CADe could substitute the human second 
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reader in the future, depending on the first reader’s experience, without improvements 
in its effectiveness (eg, a decrease in recall rate), CADe is unlikely to be a cost-effective 
alternative to double reading for mammography screening. 

• Current research is not sufficient to be able to identify whether CADe is able to reduce 
deaths due to breast cancer through early detection. 

• CADe has not been incorporated into any national breast screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women. 

Artificial intelligence  

• Fourteen studies discussed AI as a reading strategy for the early detection of breast 
cancer in asymptomatic women. 

• The use of AI in breast cancer screening of asymptomatic women is still early stages 
but is closely linked to developments in CAD. While promising, machine learning was 
in its infancy with respect to demonstrating its utility in cancer screening. 

• There is currently no indication of the timeframe in which the full clinical potential of 
AI for breast cancer detection will be realised; however, preliminary results for AI are 
promising.  

• Current research is not sufficient to be able to identify whether AI testing is able to 
reduce deaths due to breast cancer through early detection. 

• AI has not been incorporated into any national screening programs, nor are there any 
national position statements that have been released on their use in breast cancer 
screening for asymptomatic women. 

Tele-mammography 

• Four studies discussed tele-mammography’s role in interpreting mammogram images 
to support the early detection of breast cancer in asymptomatic women. 

• The use of tele-mammography appears to be at least moderately widespread, and 
seemingly has a range of benefits, including the ability to provide services to remote 
areas, and better utilisation of radiologists’ time.  

• Studies have found that there is no significant difference in screening outcomes 
between traditional mammography and tele-mammography technologies, with some 
even finding that consumer-grade image capture technologies (such as digital 
cameras) and visualisation devices (such as LCD screens) are suitable for performing 
tele-mammography.  

• It is not clear whether tele-mammography has been incorporated into any national 
screening programs, or whether its use has been determined at sub-national level. 
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Summary 

From the literature reviewed, it appears that some imaging modalities reviewed for this horizon 
scan – namely ductoscopy and thermography – have no promising application in the early 
detection of breast cancer. In the case of ductoscopy, it may continue to have a role in the 
assessment and diagnosis of DCIS. Thermography appears to play a limited reliable role in 
breast cancer screening, assessment or diagnosis. 

Other technologies are emerging. These may have a future in population screening, but it is too 
soon to determine the likelihood of this or the timeframe over which the technology will move 
from experimental testing to having a clear application to breast cancer screening. These 
technologies include blood testing, saliva testing, microwave imaging, molecular breast imaging, 
spectroscopy and tomography. In the case of biomarkers, further research focused on 
developing these innovative testing modalities to a suitable standard is needed before human or 
clinical trials can be undertaken. Further research to determine the role of the new imaging 
modalities in breast cancer detection and diagnosis is also required. 

Other innovations covered in this horizon scan relate to improvements in imaging modalities 
already used in the detection, assessment and diagnosis of breast cancer. These imaging 
modalities are ABUS, CEM, and MRI. The technology underpinning these modalities is not so 
new and technologies have demonstrated clinical benefit. Therefore, this horizon scan has 
focused on innovations to improve their application to the early detection of breast cancer in 
asymptomatic women. For example, we have reviewed MRI-related innovations focused on 
improving the early detection of breast cancers for women who have a higher than average 
lifetime risk of developing breast cancer. Other breast cancer detection technologies (namely 
DBT) are already in being used in clinical practice for either the detection or in the assessment 
and diagnosis of breast cancer and have been included in this horizon scan for completeness.  

Other innovations focus on the way in which screening modalities may be used to support a 
more personalised approach to breast cancer screening, reflecting the fact that women have 
different risk factors and that these can change over their lifetime. A move toward using 
different screening techniques at different times depending on the lifetime risk and individual 
circumstances could be informed by the innovations developing within the modalities discussed 
in this horizon scan. This horizon scan, however, did not consider any implementation issues 
associated with developing further innovations for in-practice techniques, nor did it consider 
the role of personalised screening programs based on access to a range of screening modalities. 

The final group of innovations or technologies reviewed were reading strategies such as 
computer-aided detection, AI and tele-mammography. These strategies are concurrently both in 
development (i.e., creating and testing of new algorithms to support enhanced detection and 
developing deep learning/machine reading techniques) with some being used in clinical 
practice already. These strategies therefore sit between the other groupings, in terms of the 
type and breadth of research assessing their application to the early detection of breast cancer 
for asymptomatic women. 
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DASHBOARD 

A state of play assessment reports the following … 

Biomarkers Early R+D 
(non-human 

or pre-
clinical) 

Early human 
clinical trials 

In RCT with 
humans 

In clinical 
practice with 
a screening 

setting 

Used for 
diagnosis 

and 
assessment 

No proposed 
screening 

application 

Blood tests X X     

Saliva tests X      

 

Imaging modalities Early R+D 
(non-human 

or pre-
clinical) 

Early human 
clinical trials 

In RCT with 
humans 

In clinical 
practice with 
a screening 

setting  

Used for 
diagnosis 

and 
assessment 

No proposed 
screening 

application 

Automated whole breast 
ultrasound 

  X X X  

Contrast enhanced 
mammography 

   X X  

DBT   X X X  

Ductoscopy      X 

Magnetic resonance imaging   X X X  

Microwave imaging X      

Molecular breast imaging  X  X   

Spectroscopy X      

Thermography      X 

Tomography X X     

 

Reading innovations Early R+D 
(non-human 

or pre-
clinical) 

Early human 
clinical trials 

In RCT with 
humans 

In clinical 
practice with 
a screening 

setting  

Used for 
diagnosis 

and 
assessment 

No proposed 
screening 

application 

Computer-aided detection X   X X  

Artificial intelligence  X    X  

Tele-mammography X   X X  
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INTRODUCTION 

Breast cancer is one of the leading causes of death among women in Australia. Currently, there 
is no effective way to prevent the occurrence of breast cancer. Early detection is a first crucial 
step towards breast cancer diagnosis and treatment. Currently, evidence supports bilateral full 
field digital mammography (FFDM) as the standard test for the early breast cancer detection in 
asymptomatic women due to its low cost and accessibility. While screening with FFDM presents 
some limitations (for instance, it is less effective at detecting cancer in women aged under 40 
years old or in women with more dense breasts and is less sensitive to small tumours (less than 
1 mm, about 100,000 cells), it remains the most effective method for early detection of breast 
cancer as it provides high sensitivity for women with more fatty breasts and excellent 
performance on microcalcification detection. 

New and emerging technologies to improve the early detection of breast cancer are constantly 
being developed, trialled and evaluated. As these new technologies develop and the evidence-
base for these becomes sufficiently robust, effective screening tests that are comparable or 
superior to FFDM may develop.  

New technologies that could shape the future of early detection of breast cancer could include: 

• improvements to breast imaging technologies: ABUS, contrast enhanced 
mammography, DBT, ductoscopy, electrical impedance tomography and positron 
emission tomography (PET) 

• imaging modalities that extend imaging of the breast: cone-beam breast computer 
tomography (CT) and molecular breast imaging 

• new breast imaging modalities: radar-based microwave imaging, optical breast 
imaging and spectroscopy 

• computer-aided diagnosis, remote/tele-radiology, machine reading or other AI 
applications 

• biological tests to detect abnormal proteins produced by cancers 

• risk assessment tools and tailored risk-based screening, and  

• genomic testing or cancer gene fingerprinting.  

R+D progression is reported in a variety of ways including peer-reviewed articles in scientific 
journals, health technology assessments, government papers, regulatory announcements, 
advice from professional bodies, product launches, media articles, websites and advertisements 
for breast screening products or services. Freely available information of variable quality can 
raise consumer expectations and concerns in a highly emotive subject such as early cancer 
detection. In Australia, for any new technological development to be considered for population-
based breast screening or breast cancer imaging, it must meet the criteria set down in the 
Population Based Screening Framework (2016), endorsed by the Community Care and 
Population Principal Committee of Australian Health Ministers’ Advisory Committee (AHMAC).  

To keep up with new developments in health-related technologies, the Australian Government 
established the Australian Horizon Scanning Program, a collaborative Commonwealth and State 
initiative guided by the Health Policy Advisory Committee on Technology (HealthPACT). This 
program provides notice of significant new and emerging technologies to health departments in 
Australia and New Zealand and enables the exchange of information and evaluation of the 
potential impact of new technologies on their respective health systems.  
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One report relevant to newly emerging technologies for early breast cancer detection, and 
based on the Australian Horizon Scanning Program, has been published previously. In 2009, the 
Australia and New Zealand Horizon Scanning Network published the report Emerging 
Technology Bulletin ‘New and emerging technologies for breast cancer detection’. This study 
reviewed international evidence on seven technologies for breast cancer detection: CT, PET, 
ultrasonography, thermography, electrical impedance tomography, molecular breast imaging 
(also known as scintimammography) and ductoscopy. In 2010, HealthPACT also completed a 
report on the development of molecular breast imaging (scintimammography). 

Scope  

Building on the 2009 horizon scan (Australia and New Zealand Horizon Scanning Network, 
2009), the 2018 qualitative horizon scan focuses on population-level screening. It will include: 

 Probable or possible changes to imaging technologies including technologies that are 1.
beginning to be used in clinical practice and those that are still in R+D: 

Included technologies are: contrast enhanced mammography (CEM), 
ductoscopy, ABUS, magnetic resonance imaging, thermography, molecular 
breast imaging, cone-beam breast CT, position emission tomography, electrical 
impedance tomography, radar-based microwave imaging, and optical breast 
imaging 

 Probable or possible changes to reading/interpretation technologies 2.

Included technologies are computer-aided diagnosis, remote/tele-radiology, 
machine reading or other AI applications 

 “Wildcard” changes such as biological screening tests which would have a significant 3.
impact on preferred screening modality (including blood, saliva or hair tests and 
genomic testing as a screening tool in its own right).  

As the evidence allows, we will identify technologies using the following framework: 

• May be of clinical value within a five-year timeframe 

• May be of clinical value within a five- to ten-year timeframe, and 

• May be of clinical value in more than 10 years. 

DBT is the subject of a separate literature review (refer to Allen + Clarke’s literature review on 
the role of DBT in breast cancer screening) but we have included summarised findings from this 
literature review in the horizon scan for completeness. Risk assessment tools and genomic 
testing outside of a screening context are excluded. 
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METHODOLOGY 

Summary 

This horizon scan provides a narrative, qualitative overview of research about promising 
imaging modalities, AI and key biomarkers that could potentially have an application in a 
population-based screening program for the early detection of breast cancer in asymptomatic 
women. No primary research or pooled analysis was undertaken.  

The following databases were searched between 8 and 12 January 2018: EMBASE, Ovid 
Medline, CINAHL, ProQuest and Scopus. The range of key health technology assessment and 
clinical trials websites were also searched. Other technology or specific websites may also have 
been covered when searching for grey literature on aspects of the technology or innovation. 

All returned citations and abstracts were assessed for relevance to the research questions and 
inclusion criteria. The same criteria were used to review the full-text and bibliographies of all 
articles proposed for inclusion.  

No assessment of the overall quality of the evidence was undertaken. 

Information about the methodology underpinning the chapter on DBT can be found in Allen + 
Clarke’s literature review on the role of DBT in screening. 

 

Objectives  

The Department of Health engaged Allen + Clarke to undertake a horizon scan (comprising a 
literature review and supplemented with key informant interviews) to identify new and 
emerging technologies likely to impact population-based breast cancer screening of 
asymptomatic women and the BSA program. This horizon scan: 

“maintains a predictive or speculative focus, often based on low level 
evidence, and is aimed at informing policy and decision makers. It is not a 
definitive assessment of the safety, effectiveness, ethical considerations 
and cost effectiveness of a technology. In the context of a rapidly evolving 
technology, an horizon scanning report is a ‘state of play’ assessment that 
presents a trade-off between the value of early, uncertain information, 
versus the value of certain, but late information, that may be of limited 
value to policy and decision makers”.  

The report provides the literature review component of Allen + Clarke’s work.  

  



 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 22 

 

Research questions 

Main Question Supplementary questions 

What innovations to 
existing imaging 
technologies OR 
reading/interpretation 
technologies can improve 
early detection of breast 
cancer in asymptomatic 
women? 
 

• What is the innovation? 
• What stage of development or trial is this innovation at? 
• What is its considered potential clinical value in five years? In 10 years? 
• What cost and safety findings have been reported?  
• Does this technology reduce deaths due to breast cancer through early 

detection? 
• FOR IMAGING TECHNOLOGIES: Does this innovation show high sensitivity and 

specificity for women with dense breasts and women who have had breast 
surgery/augmentation compared to digital mammography? 

• FOR INTERPRETATION/READING TECHNOLOGIES: Does this innovation show 
higher sensitivity and specificity for women with dense breasts and women 
who have had breast surgery/augmentation compared to single human view? 

• Is there evidence that this innovation is more acceptable to women (in 
general and by ethnic group) compared to digital mammography? 

• Has this innovation been implemented into a national screening program? If 
so, what outcomes have been achieved? What implementation issues arose?  

• Has a national position statement been published about this innovation, and 
if so, what is the position? Is there consensus in position statements? 

Are there new or novel 
imaging or 
reading/interpretation 
technologies that result 
in early detection of 
breast cancer in 
asymptomatic women? 

• What is the new technology? 
• What stage of development or trial is this new technology at? 
• What is its considered potential clinical value in five years? In 10 years? 
• What cost and safety findings have been reported? 
• Has this technology been implemented into a national screening program? If 

so, what outcomes have been achieved? What implementation issues arose?  
• Has a national position statement been published about this technology, and 

if so, what is the position? Is there consensus in position statements?  

Are there new or novel 
biological tests that 
result in early detection 
of breast cancer in 
asymptomatic women? 

• What is the new test? 
• Does this technology reduce deaths due to breast cancer through early 

detection? 
• What stage of development or trial is this new test at? 
• What is its considered potential clinical value in five years? In 10 years? 
• What cost and safety findings have been reported? 
• Has this test been implemented into a national screening program? If so, 

what outcomes have been achieved? What implementation issues arose?  
• Has a national position statement been published about this test, and if so, 

what is the position? Is there consensus in position statements? 
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Literature search 

The following databases were searched between 8 and 12 January 2018: 

• AustHealth  

• Australian Medical Index  

• Australian Public Affairs Information Service (APAIS) - Health  

• Cinahl  

• Cochrane Library – including, Cochrane Database of Systematic Reviews, Database of 
Abstracts of Reviews of Effects, the Cochrane Central Register of Controlled Trials 
(CENTRAL), the Health Technology Assessment Database, the NHS Economic 
Evaluation Database  

• Current Contents  

• Embase  

• OVID Medline (and Pre-Medline) 

• ProceedingsFirst  

• ProQuest 

• PsycInfo  

• Web of Science – Science Citation Index Expanded. 

Supplemental searches of the following websites searched were conducted in January and 
February 2018: 

• Australian Clinical Trials Registry www.actr.org.au/default.aspx  

• Breast Cancer Research Institute of Australia: www.breastcancertrials.org.au/  

• Breast Cancer Network Australia www.bcna.org.au   

• Clinical Trials Registry www.clinicaltrials.gov  

• Current Controlled Trials metaRegister www.controlled-trials.com/  

• Health Technology Assessment International www.htai.org  

• International Network for Agencies for Health Technology Assessment 
www.inahta.org/  

• Medicines and Healthcare Products Regulatory Agency (UK) 
www.mhra.gov.uk/index.htm  

• National Library of Medicine Health Services/Technology Assessment Text 
www.ncbi.nlm.nih.gov/books  

• National Library of Medicine Locator Plus database www.locatorplus.gov  

• National Institute for Health Research UK HTA programme 
www.journalslibrary.nihr.ac.uk/programmes/hta/  

• New York Academy of Medicine Grey Literature Report 
www.nyam.org/library/grey.shtml  

http://www.actr.org.au/default.aspx
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.actr.org.au/default.aspx
https://www.breastcancertrials.org.au/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.breastcancertrials.org.au/
http://www.bcna.org.au/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.bcna.org.au
http://www.clinicaltrials.gov/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.clinicaltrials.gov
http://controlled-trials.com/
http://www.controlled-trials.com/
http://www.htai.org/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.htai.org
http://www.inahta.org/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.inahta.org/
http://www.mhra.gov.uk/index.htm
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.mhra.gov.uk/index.htm
http://www.ncbi.nlm.nih.gov/books
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.ncbi.nlm.nih.gov/books
http://locatorplus.gov/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.locatorplus.gov
https://www.journalslibrary.nihr.ac.uk/programmes/hta/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.journalslibrary.nihr.ac.uk/programmes/hta/
http://www.nyam.org/library/grey.shtml
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.nyam.org/library/grey.shtml
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• Trip database www.tripdatabase.com  

• U.K. National Research Register www.portal.nihr.ac.uk/Pages/NRRArchive.aspx 

• US Food and Drug Administration, Center for Devices and Radiological Health. 
www.fda.gov/cdrh/databases.html  

• Websites of Specialty Organisations (dependent on technology topic area), and 

• National Breast Cancer Foundation.  

To complete a systematic search, we used combinations of subject/index terms where 
appropriate (eg, exploded term ‘mammography’ or exploded ‘breast neoplasm’) in combination 
with key words, or key words alone depending on the search functionality of each database or 
website (eg, main searches included ‘tomography’ PLUS ‘breast cancer’ PLUS ‘screen*’ in the 
title or abstract).  

The following limits were applied on all searches:  

• a date criterion (1 January 2010 – 31 December 2017 or 2010 onwards) 

• English language, and 

• study type restrictions (where available and appropriate, we restricted returns from 
research databases to peer-reviewed systematic reviews, literature reviews, RCT, 
observational studies and clinical trials).  

As ‘human’ was not used as a limiter, some animal studies were returned for the search terms. 
These were excluded once identified. Duplicate citations and a small number of false 
hits/inaccurate returns were removed before all initial returned citations and abstracts were 
reviewed for relevance to the main research questions.  

Material was excluded if it: 

• did not relate to a test that could be used in a population-based screening program for 
the early detection of breast cancer in asymptomatic women 

• compared potential screening performance to tests other than FFDM 

• focused on a study population other than asymptomatic women 

• related to surveillance, diagnosis or treatment.  

To determine if this first search retrieved the correct range of available research, a validation 
process was completed using recent systematic or literature reviews relevant to the technology 
(where these were available).  

From this first sweep, full texts for all proposed inclusions were retrieved and reviewed for 
relevance to the research questions, inclusion criteria and documented PICOT criteria. A critical 
appraisal of study design (to determine overall quality) was completed and the bibliography of 
each included article was reviewed to identify other relevant research that may be of interest. 

The citation review process is described at the beginning of each chapter. 

  

http://www.tripdatabase.com/
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.tripdatabase.com
https://portal.nihr.ac.uk/Pages/NRRArchive.aspx
http://www.portal.nihr.ac.uk/Pages/NRRArchive.aspx
http://www.fda.gov/cdrh/databases.html
file://central.health/DfsUserEnv/Users/User_18/PJENNI/Desktop/www.fda.gov/cdrh/databases.html
https://nbcf.org.au/
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Interpretation notes 

We describe the body of research for each technology/innovation in each chapter of this report. 
In summary, limited literature sources and/or grey material were identified for some of the 
technologies and innovations reviewed as part of this horizon scan. For emerging technologies 
(biomarkers and some new imaging techniques), the research is in its infancy and is focused on 
developing tools with adequate sensitivity and specificity (as is the case for blood and saliva 
testing and some of the imaging techniques like molecular breast imaging and spectroscopy).  

Other imaging technologies and reading strategies (including DBT, MRI or ultrasound) are 
already be used in screening environments as either a primary screening tool (DBT) or as a 
supplemental screening examination following FFDM or instead of FFDM (MRI and ultrasound). 
The body of evidence discussing these techniques in a screening setting is deep and we relied 
less heavily on grey literature. Also, where a technology is in use in a screening setting (and 
usually it is used for groups of women who have high lifetime risk of cancer), we have focused 
our approach to reporting the evidence base to the innovations that are coming (rather than its 
current use as an adjunct or supplemental screen). For example, we provide contextual material 
about the use of ultrasound in the early detection of breast cancer in asymptomatic women 
screening but have focused our review on the innovations arising from the development and 
testing of ABUS. Further information about supplemental screening tests for women with more 
dense breasts is discussed in Allen + Clarke’s literature review on breast density and 
mammography (Allen + Clarke, unpublished). 

Some other technologies like tomography have a clinical application in the diagnosis of breast 
cancer and treatment management. Again, deep bodies of evidence underpin the clinical use of 
the technology; however, literature may have much less focus on the technology’s impact on the 
early detection of breast cancer in asymptomatic women. In these instances, we have focused 
only on the literature discussing the technology’s potential application to a screening 
environment.  

This horizon scan does not separately review the literature regarding the use of genomic 
screening as an early cancer detection modality. This is because current genomic screening 
literature is primarily focused on the identification of genetic risk predictors for the 
development of breast cancer, rather than the actual detection of malignancy in asymptomatic 
women. The use of genomic screening is therefore in identifying high-risk women who could 
potentially benefit from individualised breast cancer screening using technologies that detect 
the presence of breast cancer, such as FFDM or other modalities that are reviewed in this 
horizon scan. This falls outside of the scope of the current scan, which was focused on early 
breast cancer detection for asymptomatic women in the general population (i.e., healthy women 
at average risk of developing breast cancer). 

Although genomic screening falls outside the scope of the current horizon scan, it is not a 
reflection on the potential importance of genomic screening for informing future decisions 
around population-level screening. The search for genetic risk predictors – often conducted 
through genome-wide association studies involving population-level data – will help to identify 
individuals who are at a higher risk of developing breast cancer. This in turn could potentially 
inform the development of individualised screening (and treatment) approaches for certain 
sub-populations, thereby improving the early detection of breast cancer among those at highest 
risk of developing malignancies. Genomics is therefore an area that should be considered in 
future decisions regarding individualised breast cancer screening programs for asymptomatic 
women. 
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The following biomarkers, imaging modalities and reading strategies are included in this 
horizon scan: 

Biomarkers 

• Blood tests 

• Saliva tests 

Imaging modalities 

• Automated whole breast ultrasound 

• Contrast enhanced mammography 

• Digital breast tomosynthesis 

• Ductoscopy 

• Magnetic resonance imaging 

• Microwave imaging 

• Molecular breast imaging 

• Spectroscopy 

• Thermography 

• Tomography 

Reading strategies 

• Artificial intelligence  

• Computer-aided detection 

• Tele-mammography 
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BIOMARKERS 

This section covers: 

• Blood tests, and 

• Saliva testing. 
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1. BLOOD TESTS 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The use of blood testing for the early detection of breast cancer in asymptomatic women was not 
covered in the 2009 report. 

1.1. Blood testing as a breast cancer screening test 

Most biological processes of cancer result in the release of biomarkers that are present in the 
blood (Cree, 2011). These biomarkers are easily and inexpensively measured in bodily fluids 
(mainly in serum or plasma), with results being quickly available to clinicians and patients 
(Holdenrieder, Pagliaro, Morgenstern, & Dayyani, 2016). Furthermore, the tests are not overly 
invasive and do not increase patient risk, as they do not require biopsies or involve radiation 
(Hyun, Kim, Gwak, & Jung, 2016). This makes blood biomarkers a promising alternative 
screening modality for the early detection of breast cancer in asymptomatic women. 

There are currently no identified blood biomarkers that have sufficient sensitivity and specificity 
to support their use in existing breast cancer screening programs for asymptomatic women 
(Cree et al., 2017); however, there are several different blood biomarkers that show promise. A 
significant amount of current research is focused on developing more specific and sensitive tests 
using these markers. Three biomarkers were studied in the identified literature:  

 circulating microRNAs 1.

 circulating tumour DNA (ctDNA), and 2.

 circulating tumour cells (CTCs). 3.

This section of the horizon scan presents findings related to these three biomarkers.  

1.2. Summary of key findings  

• The use of blood testing in breast cancer screening of asymptomatic women is still in 
the early stages, with much of the research focus being on identifying promising 
biomarkers that demonstrate sufficient sensitivity and specificity to support their use 
in further clinical testing. Research is most advanced concerning the use of microRNA 
in screening. 

• There is no indication of the timeframe in which the full clinical potential of blood 
testing for breast cancer detection will be realised; however, preliminary results from 
primarily retrospective studies are promising and the technology is improving rapidly.  

• Blood testing has not been incorporated into any national screening programs, nor are 
there any national position statements that have been released on their use in breast 
cancer screening. 

• Current research is not sufficient to be able to identify whether blood biomarker testing 
is able to reduce deaths due to breast cancer through early detection. 
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1.3. Literature search results (number of studies returned) 

From the literature search, a total of 22 articles related to blood testing were identified. Abstract 
contents were then reviewed and 20 of these articles were excluded for numerous reasons, 
including: relating to risk assessment or diagnosis rather than cancer detection; involving only 
non-human subjects or symptomatic participants; or relating to cancer generally rather than 
breast cancer specifically. One further article was subsequently excluded because it could not be 
located (Weigel & Dowsett, 2010). The reference lists of both included and excluded articles 
were reviewed, which led to the inclusion of a further four studies.  

Because of the relatively early stage of research in this area, many of the more recent articles do 
not include asymptomatic samples or participants. Additionally, much of the current research 
focus for blood testing relates to breast cancer diagnosis or treatment, rather than to early 
detection in asymptomatic women. We therefore included the most recent articles we could find 
on each of the biomarkers, meaning that the only article identified for CTC testing was published 
before the 2010 cut-off for the literature search (eg, Mostert, Sleijfer, Foekens, & Gratama, 2009). 
Furthermore, studies already incorporated into an existing systematic or literature review were 
not separately assessed for the current scan. 

A total of five articles were then reviewed to answer the key research questions in relation to the 
use of blood testing for breast cancer screening in asymptomatic women.  

Systematic and/or literature reviews 

ctDNA: One study (Cheuk, Shin, & Kwong, 2017) 

CTCs: One study (Mostert et al., 2009) 

RCTs 

None identified 

Prospective studies 

microRNAs: One study (Godfrey et al., 2013) 

Retrospective studies 

ctDNA: One study (Kloten et al., 2013)  

microRNAs: One study (Ng et al., 2013) 

Grey literature 

None identified 

1.4. Study findings and discussion 

1.4.1. What stage of development or trial are the new tests at? 

Circulating tumour DNA (ctDNA) 

ctDNA is a circulating cell free DNA that has been linked to the presence of numerous types of 
cancer, including breast cancer (Cree et al., 2017). Because ctDNA is produced as a result of cell 
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death it can also appear because of the presence of a number of other health conditions 
including myocardial infarction, pregnancy, and serious infections or inflammatory conditions 
(Cree et al., 2017). High levels of ctDNA are therefore not specific to cancer and may reduce 
specificity when used in breast cancer screening of asymptomatic women. Research is currently 
focused on identifying ctDNA markers that are specific to breast cancer, thereby improving its 
potential to be used in screening. 

Blood testing based on ctDNA is still at the stage of identifying biomarkers with sufficient 
specificity and sensitivity to have a screening application. Screening blood tests based on ctDNA 
involve the identification of methylation in a panel of tumour-suppressor genes. A panel of genes 
is required because no single gene has been found to be methylated in every breast cancer 
specimen (Kloten et al., 2013). However, there is currently no scientific consensus as to which 
genes should be included in the panel used in testing. Identifying genes that provide adequate 
levels of specificity and sensitivity in distinguishing between individuals with breast cancer and 
those without is currently the focus of a large majority of literature in this area.  

Circulating tumour cells (CTCs) 

CTCs are defined as cells shed from either the primary tumour or its metastases, that are 
circulating in the periphery blood system. There have been numerous attempts at developing 
measures of CTCs in the blood but there is not one specfic feature of CTCs that reliably 
differentiates them from regular blood cells (Mostert et al., 2009). CTCs are also rare events, 
meaning that they are present only at extremely low levels in the blood. These issues affect the 
sensitivity and specifity of CTCs in detecting early breast cancer, and prohibit the adoption of 
CTC detection into current screening programs.  

Research looking at the potential utility of CTC measurement in screening for breast cancer is 
still in concept testing stages. As mentioned above, there is no one feature of CTCs that allow 
them to be reliably differentiated from normal blood cells. Also, different histological and 
molecular types of tumours produce different CTC features. Current research is focused on 
identifying the optimal array of CTC markers to produce sufficient sensitivity and specificity in 
screening. We were only able to identify one study that assessed the use of CTCs in breast cancer 
screening. Mostert et al.’s 2009 study also discussed the use of CTCs in cancer screening more 
broadly. 

Circulating microRNAs 

Small non-protein-coding RNAs (microRNAs) play important roles in the formation of cancer, 
with levels of microRNAs being found to be elevated in individuals with breast cancer (Ng et al., 
2013). MicroRNAs are present in both human plasma and serum, with the presence of tumours 
altering their expression. The stability of microRNA levels in samples of plasma and serum make 
them a potentially useful test marker in screening for breast cancer (Godfrey et al., 2013).  

Although there is not much existing research on the application of microRNA testing for use in 
breast cancer screening, the research is slightly more advanced than for cfDNA or CTC tests. 
Prospective field studies have begun on the use of microRNA testing in breast cancer screening 
for asymptomatic women, with the results from one study published (Godfrey et al., 2013) and 
another study currently being conducted (Giordano, Gallo, Petracci, Chiorino, & Segnan, 2017). 
This study is expected to complete data collection in March 2018. These studies will provide 
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more reliable information about the utility and challenges of implementing microRNA testing 
into screening programs at the population level than is available from retrospective studies. 

1.4.2. What are their considered potential clinical value in five years? In 10 years? 

The identified literature did not discuss timeframes in which potential clinical value may be 
realised, as the testing of biomarkers as part of screening programs is still in its relative infancy. 
That said, two papers noted the speed at which this technology has been developing over the 
past decade for the screening of cancers, including prostate cancer and breast cancer 
(Holdenrieder et al., 2016; Volik, Alcaide, Morin, & Collins, 2016). 

Although we were not able to determine an indicative timeframe for the full potential of these 
tests to be realised, there have been a growing number of studies assessing the potential 
specificity and sensitivity of the biomarkers for detecting breast cancer in asymptomatic women. 
In order to replace the current standard breast cancer screening test (FFDM), blood biomarkers 
need to be able to achieve a sensitivity of at least 70% and a specificity of at least 85% (Kloten et 
al., 2013). Findings from the identified literature are outlined below for each biomarker, 
separated by the type of study methodology utilised. 

ctDNA 

Systematic and/or literature reviews 

One systematic review on 14 studies assessing the utility of ctDNA testing in breast cancer 
detection was identified (Cheuk et al., 2017); however, the focus of this review was partially on 
breast cancer diagnosis rather than on early detection. Furthermore, the review did not include 
specificity and/or sensitivity rates found in each of the studies. The reviewed studies all used 
retrospective case-controlled designs to assess the performance of ctDNA testing in breast 
cancer. The studies included in the systematic review are provided in Blood Test Table 1 
(overleaf).  

Individual studies have been accessed where possible, and sensitivity and specificity rates for 
samples from breast cancer patients compared with healthy controls have been included, where 
available. Overall, sensitivity ranged from 62-95%, and specificity ranged from 87-100%. These 
results are promising in suggesting that ctDNA testing may be sufficiently specific and sensitive 
in the early detection of cancer in asymptomatic women to provide a viable alternative to FFDM. 

Despite the limitations of the review, there were several findings that provide insights into how 
specificity and sensitivity might be improved in ctDNA testing. The authors noted that results 
from the 14 studies promote the use of a multigene panel in ctDNA testing (used in seven 
studies) rather than single gene testing (used in seven studies), as multigene panels produced 
higher sensitivity and specificity during cancer detection. Also, the sensitivity of ctDNA testing 
was found to be lower in plasma or serum samples than in primary tumour tissue samples, with 
the use of plasma or serum samples decreasing sensitivity by 9 to 15 percentage points in two 
studies.  

The review discussed the limitations of existing ctDNA research, including relatively small 
sample sizes and the need to increase the number of studies including healthy controls so that 
the utility of ctDNA for use in breast cancer screening for asymptomatic women can be further 
investigated. They also noted the need for standardised guidelines for conducting research in 
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this area so that studies can be pooled and meta-analysed to overcome limitations posed by 
small sample sizes. 

These results are supportive of the utility of this gene panel for breast cancer screening blood 
tests, with specificity and sensitivity rates higher than that commonly found for digital 
mammography. Although promising, it is important that these results are replicated in other 
studies, including studies that directly compare the performance of ctDNA testing and FFDM.  

 

Note: Retrieved from Cheuk et al. (2017). 

Author Year Sample size Type of 
specimen 

Single or 
multigene 

Sensitivity Specificity 

Chimonidou et al. 2013 Control, 60; cancer, 114 Plasma Single Not provided Not provided 

Chimonidou et al. 2013 Control, 37; cancer, 27 
(discovery), 46 (metastatic), 

123 (validation) 

Plasma Single Not provided Not provided 

Dulaimi et al. 2004 Control, 20; benign, 8; cancer, 
34 

Serum 3 genes Not 
accessible 

Not 
accessible 

Fu et al. 2015 Benign, 60; cancer, 155 Plasma Single No control No control 

Guerrero-Preston 
et al. 

2014 Control, 20 (discovery), 86 
(validation); cancer, 20 

(discovery), 154 (validation) 

Plasma 5 genes 94% 87% 

Hagrass et al. 2014 Benign, 100; cancer, 120 Serum Single No control No control 

Hoque et al. 2006 Control, 76 (discovery), 38 
(validation); cancer, 93 

(discovery), 47 (validation) 

Plasma 4 genes 62% 87% 

Martínez-Galán et 
al. 

2008 Control, 74; benign, 34; cancer, 
106; post-operational, 60 

Serum 5 genes 81% 88% 

Ng et al. 2011 Control, 60 (discovery), 20 
(validation); breast cancer, 60 

(discovery), 38 (validation); 
gastric cancer, 45 (discovery), 

20 (validation) 

Plasma Single 87% 85% 

Radpour et al. 2011 Control, 30 (plasma, discovery); 
cancer, 36 (plasma, discovery), 

20 (serum, validation) 

Plasma, 
serum 

10 genes 92% 90% 

Sharma et al. 2011 Control, 30; cancer, 100 Serum Single Not provided Not provided 

Silva et al. 1999 Control, 17; cancer, 35 Plasma Single Not provided Not provided 

Skvortsova et al. 2006 Control, 10; benign, 15; cancer, 
20 

Plasma 3 genes 95% 100% 

Yamamoto et al. 2012 Control, 87; cancer, 159 Serum 3 genes 78% 93% 

 

Retrospective studies 

Blood Test Table 1: Studies included in Cheuk et al. (2017) systematic review 
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One retrospective study assessing ctDNA testing in the early detection of breast cancer was 
identified that was not included in the above systematic review (Kloten et al., 2013). This study 
assessed the potential of ctDNA measurement in seven tumour-suppressor genes for use in 
breast cancer screening. Using serum samples from 138 breast cancer patients and 135 healthy 
adult controls, they found that by using three genes they were able to detect breast cancer with a 
sensitivity of 67% and specificity of 69%. It was noted that these sensitivity and specificity levels 
were not sufficient to out-perform general results found for FFDM; however, the authors suggest 
that this gene panel may be useful for screening women with dense breasts due to the reduced 
accuracy of digital mammograms in this population.  

microRNAs 

Prospective studies 

To prospectively assess the ability of microRNAs to successfully detect breast cancer in the 
general population, Godfrey et al. (2013) obtained serum samples from 205 women who 
subsequently developed breast cancer, and 205 women who remained cancer-free. These 
participants were sourced from the Sister Study cohort, which comprises 50,884 self-selected 
women from the US or Puerto Rico who had never had breast cancer but who had a full or half-
sister who had breast cancer at time of enrolment. This puts the sample at higher risk of 
developing breast cancer, meaning that the generalisability of results to average-risk women 
may be affected. The serum samples used for the women who developed breast cancer were 
taken within 18 months prior to their diagnosis, and controls were matched on criteria including 
ethnicity, age, and similar date of blood draw.  

Results showed statistically significant (although relatively small) differences in the levels of 21 
microRNAs between the women who developed breast cancer and the controls, with differences 
ranging from 4-19% (p<.05). Importantly, previous reports of primary breast tumours had 
examined seven of these 21 microRNAs, with results from all reports matching the results found 
in Godfrey et al.’s study. No measures of specificity or sensitivity were reported in this study, 
however the authors felt that the results questioned the utility of microRNA serum testing for 
screening purposes due to the relatively small differences between groups (and thereby the 
impact this would potentially have on sensitivity).  

Retrospective studies 

One retrospective study provided slightly more promising indications of the utility of microRNA 
in breast cancer screening for asymptomatic women. Ng et al. (2013) used plasma samples from 
70 female breast cancer patients and 100 healthy controls (60 female and 40 male) to validate 
the use of microRNA measurement in the detection of breast cancer. Levels of four specific 
microRNAs were assessed in the plasma samples. Results found that there was no significant 
difference in the level of microRNA markers between female and male controls. Levels of three 
of the markers were significantly higher, and one significantly lower, in breast cancer patients 
compared with controls (p<.0001).  

Logistic regression was used to identify the two markers that were the best combination for 
breast cancer detection. Receiver operating characteristic (ROC) curve analysis for these 
combined markers showed an AUC of 0.931 (95% CI 0.886 – 0.977), indicating a strong ability 
for predicting breast cancer. A sensitivity and specificity of 83% (95% CI 72% - 91%) and 93% 
(95% CI 81% - 98%), respectively, were found in discriminating breast cancer from healthy 
controls. Furthermore, the positive predictive value was 88% and the negative predictive value 
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was 92%. Perhaps most importantly for future potential of these markers in screening, the 
results showed that these two markers were specific to breast cancer and did not elevate in 
other cancers included in the study. The authors suggested these results make a very promising 
and specific breast cancer screening test based on microRNAs possible, however further 
research is needed to validate this finding. 

CTCs 

Systematic and/or literature reviews 

One literature review was identified relating to the measurement of CTCs in breast cancer. This 
review only included primary studies quantifying the performance of CTC testing in the 
diagnosis or treatment of breast cancer (Mostert et al., 2009). The review noted that there are 
currently specificity and sensitivity issues with CTC testing (as described in section 1.4.1), which 
was likely to affect its appropriateness and accuracy for breast cancer screening. It highlighted 
the ongoing efforts to identify an optimal assay of CTC markers that would result in an 
improvement in sensitivity and specificity to levels that were adequate for prospective studies. 

1.4.3. What cost and safety findings have been reported? 

No information on the cost and safety of blood testing was identified for any of the biomarkers 
that could potentially be used for breast cancer screening; however, there was wide-spread 
recognition that blood testing is relatively inexpensive, potentially able to be incorporated into 
annual general health checks, and relatively non-invasive, and could therefore arguably be more 
acceptable to screening patients than other modalities currently used (Volik et al., 2016; Cree, 
2011). 

1.4.4. Does this technology reduce deaths due to breast cancer through early detection? 

Current research is not sufficient to be able to identify whether blood biomarker testing is able 
to reduce deaths due to breast cancer through early detection of cancer in asymptomatic 
women. 

None of the articles reviewed for this horizon scan specifically talked whether blood testing can 
detect smaller cancers. Research for blood testing is still at a concept-testing stage, which means 
that the current research typically uses a sample of breast cancer patients and compares their 
blood profiles to healthy controls. This means that in the current research, the trial of blood 
testing most likely involves patients with relatively large tumours (but again, this is uncertain). 
This is a key gap in the current evidence base which will develop further.  

1.4.5. Has this test been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

Blood biomarker testing has not been incorporated into any national screening programs. 

1.4.6. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there consensus in position statements? 

No national position statements on the use of blood biomarker testing in breast cancer screening 
were identified in the literature search. 
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2. SALIVA TESTING 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The use of saliva testing for the early detection of breast cancer in asymptomatic women was not 
covered in the 2009 report. 

2.1. Saliva testing as a breast cancer screening test 

The use of saliva testing is increasingly becoming a research focus for the early detection of 
breast cancer in asymptomatic women. There are a number of advantages to using saliva for 
screening, including that sampling is easy, cheap and non-invasive, and can be collected by 
individuals with relatively little training (Liu & Duan, 2012; Pfaffe, Cooper-White, Beyerlein, 
Kostner, & Punyadeera, 2011). Additionally, due to the continual production of saliva in humans, 
saliva samples are able to give a picture of body condition and health at the exact point of sample 
collection (Streckfus, Brown, & Bull, 2010).  

Despite the promise of saliva testing for use in the early detection of breast cancer in 
asymptomatic women, there is currently no saliva-based test that is sufficiently sensitive or 
specific for use in routine screening (Sugimoto, Wong, Hirayama, Soga, & Tomita, 2010); 
however, research is still being carried out to further develop saliva testing so that its full clinical 
potential can be reached. This section provides an overview of our current understanding of the 
potential for saliva testing to be used in the early detection of breast cancer in asymptomatic 
women. 

2.2. Summary of key findings  

• The use of saliva testing in breast cancer screening of asymptomatic women is still 
early stages, with much of the research focused on identifying promising biomarkers 
that are specific to breast cancer, and which can detect breast cancer with sufficient 
sensitivity and specificity to support their use in further clinical testing (including 
prospective studies and RCTs). Current research is limited to retrospective studies 
comparing samples from breast cancer patients with healthy controls. 

• There is currently no indication of the timeframe in which the full clinical potential of 
saliva testing for breast cancer detection will be realised; however, preliminary results 
from retrospective studies are promising, with studies routinely finding sensitivity and 
specificity rates over 80%, or even over 90%, for a range of saliva biomarkers.  

• Saliva testing has not been incorporated into any national screening programs, nor are 
there any national position statements that have been released on their use in breast 
cancer screening for asymptomatic women. 

• Current research is not sufficiently advanced to identify whether saliva biomarker 
testing is able to reduce deaths due to breast cancer through early detection. 
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2.3. Literature search results (number of studies returned) 

From the literature search, a total of 11 articles related to saliva testing were identified. Abstract 
contents were then reviewed and three of these articles were excluded; one study because it 
related to the development of a saliva testing device rather than the validation of saliva testing 
on humans, and two studies because they were not specific to breast cancer. Examination of the 
reference lists for both included and excluded studies led to the identification of one further 
included study. 

A total of nine articles were then reviewed to answer the key research questions in relation to 
the use of saliva testing for breast cancer screening in asymptomatic women.  

Systematic and/or literature reviews 

Three general literature reviews: Liu & Duan, 2012; Pfaffe et al., 2011; Streckfus et al., 
2010  

RCTs 

 None identified. 

Prospective studies 

None identified. 

Retrospective studies 

Six retrospective studies: Al-Muhtaseb, 2014; Hernandez-Arteaga et al., 2017; Sugimoto 
et al., 2010; Takayama et al., 2016; Zhang et al., 2010; Zhong, Cheng, Lu, Duan, & Wang, 
2016. 

Grey literature 

None identified. 

2.4. Study findings and discussion 

2.4.1. What stage of development or trial are the new tests at? 

Research into the use of saliva testing for the early detection of breast cancer is still in a 
relatively early stage. Human saliva comprises a number of different proteins and peptides, and 
so one of the important first steps in realising the potential of saliva as a screening test is to 
discover saliva biomarkers that are specific to breast cancer (Liu & Duan, 2012). 
Problematically, some studies have found that some of the saliva biomarkers explored are not 
specific to breast cancer and are confounded by the presence of other cancers (Hernandez-
Arteaga et al., 2017; Sugimoto et al., 2010).  

The detection of appropriate salivary biomarkers is currently the predominant focus of research 
in this area, with researchers using studies of proteomes (groups of proteins) to identify 
biomarkers that are promising in terms of their specificity and sensitivity in detecting breast 
cancer. As such, all articles identified used retrospective designs, which limits the strength of the 
conclusions that can be drawn from this research. Prospective or RCT trials conducted in the 
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field would provide more reliable evidence about the performance of saliva testing in the early 
detection of breast cancer for asymptomatic women. 

2.4.2. What are their considered potential clinical value in five years? In 10 years? 

Because of the relative infancy of research in the use of saliva testing for the early detection of 
breast cancer, there is no indication of the timeframes in which the clinical potential of saliva 
testing will be realised. However, there is a growing body of research assessing the potential of 
saliva testing in breast cancer screening that utilises retrospective designs with samples of 
breast cancer patients and healthy controls. This research can provide an indication of the 
potential sensitivity and specificity of saliva testing in the early detection of breast cancer in 
asymptomatic women.  

In order to replace the current standard in breast cancer screening – FFDM – saliva biomarker 
testing needs to be able to achieve a sensitivity of at least 70% and a specificity of at least 85% 
(Kloten et al., 2013) as well as be fast to administer, cost-effective, safe and acceptable to women 
and health practitioners.  

Systematic and/or literature reviews 

The three general reviews did not contain any specific information about the specificity and 
sensitivity found in studies discussed, so the individual studies were identified in reference lists 
and reviewed separately below. 

Retrospective studies 

The most recent article identified measured sialic acid levels in saliva samples obtained from 
100 female breast cancer patients and 106 healthy female controls (Hernandez-Arteaga et al., 
2017). They found that levels of sialic acid were significantly higher in breast cancer patients 
compared with controls (p<.05), with testing able to differentiate between the two samples with 
a sensitivity of 94% and a specificity of 98%. Although these results are promising, it is 
important to note that the age profiles of the two samples were markedly different, with the 
control group being younger on average (M = 28.6 years) than the breast cancer patients (M = 
51.8 years). The effect of this age difference was not specifically assessed in the study, although 
the authors note that previous research indicates that levels of sialic acid do not differ by age to 
such an extent that they would expect it to affect their results. 

High rates of specificity and sensitivity were also found in four other studies. The first, 
Takayama et al. (2016), measured the concentration of 10 polyamines extracted from saliva 
samples obtained from 191 breast cancer patients and 61 healthy controls. They found that 
concentration of eight of the polyamines was significantly higher, and significantly lower in two 
of the polyamines, for breast cancer patients compared with controls. Additionally, 
measurement of the concentration of eight of the polyamines was able to detect breast cancer 
with a sensitivity and sensitivity of 88% each. Although lower than the sensitivity and specificity 
identified in the previous study, these results still indicate that saliva testing may be more 
specific and sensitive than FFDM in the detection of breast cancer. 

In the second study, Zhong, Cheng, Lu, Duan, & Wang (2016) found high rates of specificity and 
sensitivity in a range of different saliva biomarkers. They collected saliva samples from 30 
female breast cancer patients and 25 healthy female controls, and measured levels of 18 
different biomarkers. They found differences in the profiles of each of these biomarkers between 
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the two samples, with sensitivity ranging from 48-96% and specificity ranging from 54-100% 
across the biomarkers. They did not provide an indication of the specificity and sensitivity 
obtained from measuring multiple biomarkers at once, however the high rates found for 
individual biomarkers are promising. It is likely that combining different biomarkers into the 
one test would improve overall sensitivity and specificity. 

The third study, Zhang et al. (2010), used saliva samples from 30 breast cancer patients and 63 
matched healthy controls to assess the cancer detection performance of eight mRNA biomarkers 
and one protein biomarker found in saliva. They found statistically significant differences in the 
profiles of these biomarkers between the patients and controls and were able to differentiate 
between the samples with 83% sensitivity and 97% specificity (p<.05). As a further 
demonstration of the promise of saliva testing for screening purposes, none of the confounders 
assessed (including age, ethnicity, menopause, and smoking status) affected the profiles of the 
biomarkers measured.  

The discriminative ability of saliva biomarkers for breast cancer detection was also 
demonstrated by another retrospective study (Sugimoto et al., 2010). This study measured 14 
metabolites extracted from saliva obtained from 30 breast cancer patients and 87 healthy 
controls. Although sensitivity and specificity were not separately reported, they found an Area 
Under the Curve (AUC) value of 0.881, demonstrating the ability to differentiate between 
controls and patients to a high degree of accuracy. Despite finding a significant difference in the 
median age of the two samples (57 for patients and 43 for controls), the researchers concluded 
there was no correlation between metabolite levels and age. Although these results are 
promising, the researchers also found that the 14 metabolites measured were not specific to 
breast cancer, with testing not able to accurately differentiate between breast cancer patients 
and patients with oral cancer or pancreatic cancer. This casts doubt on the ability of these 
metabolites to specifically detect breast cancer in general populations.  

One additional study did not provide sensitivity and specificity measures for the use of saliva 
testing in early breast cancer detection; however, the authors were able to demonstrate 
differences in saliva profiles between breast cancer patients and healthy individuals. Al-
Muhtaseb (2014) measured levels of saliva proteins collected from 40 female breast cancer 
patients and 40 female healthy controls aged between 50 and 70 years. They were able to show 
that the levels of saliva protein were significantly lower in breast cancer patients than in the 
healthy controls (p<.05), demonstrating the potential for saliva protein measurement as a 
cancer detection test.  

Overall, results are promising in terms of the potential sensitivity and specificity of saliva testing 
for the early detection of breast cancer in asymptomatic women, however all available research 
is retrospective in design and uses relatively small sample sizes. This limits our ability to reliably 
determine the specificity and sensitivity of salvia testing in clinical settings. 

2.4.3. What cost and safety findings have been reported? 

There is currently no information on the cost and safety of saliva testing for breast cancer 
screening; however, much of the literature notes that saliva testing is relatively inexpensive, 
non-invasive, and safer than other screening tests due to there being no need for needles, 
radiation or biopsies for assessment purposes (Liu & Duan, 2012; Streckfus et al., 2010). Costs 
would also be reduced in that the training needed to take samples is relatively low (Pfaffe et al., 
2011). 
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2.4.4. Does this technology reduce deaths due to breast cancer through early detection? 

Current research is not sufficient to be able to identify whether saliva testing is able to reduce 
deaths due to breast cancer through early detection of cancer in asymptomatic women. 

None of the articles reviewed for this horizon scan specifically talked about breast cancer 
tumour size and its impact on the accuracy of saliva testing. Research is still at a concept-testing 
stage, which means that the current research typically uses a sample of breast cancer patients 
and compares their saliva profiles to healthy controls. Limited information about tumour size at 
detection is a limitation of the current evidence base. In addition, saliva profiles are correlated 
with the size of oral cancer tumours, which indicates that there is potential for smaller tumours 
to make an impression on saliva profiles, but this is not specific to breast cancer. 

2.4.5. Has this test been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

Saliva testing has not been incorporated into any national screening programs. 

2.4.6. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there consensus in position statements? 

No national position statements on the use of saliva testing in breast cancer screening were 
identified in the literature search. 
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IMAGING MODALITIES 

This section covers: 

• Automated whole breast ultrasound 

• Contrast enhanced mammography 

• Digital breast tomosynthesis 

• Ductoscopy 

• Magnetic resonance imaging 

• Microwave imaging 

• Molecular breast imaging (scintimammography) 

• Spectroscopy 

• Thermography, and 

• Tomography. 
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3. AUTOMATED WHOLE BREAST ULTRASOUND  

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

Safety: No adverse effects associated with the use of ABUS were identified. Ultrasound does not 
use ionising radiation, contributing to the safety of the procedure. 

Effectiveness: Overall, the review of three studies was inconclusive regarding the effectiveness of 
ultrasound compared with mammography. Results suggested that ultrasound could be 
associated with lower specificity in the early detection of breast cancer for asymptomatic 
women; however, there was some indication that using ultrasound as an adjunct to 
mammography may have some benefit. 

Cost: Two studies estimated the cost per ultrasound examination to range from €22-62. The cost 
per cancer detected was substantially higher for ultrasound (ranging from €14,618 – 25,847) 
compared with mammography screening (€5,000). 

3.1. Ultrasonography as a breast screening tool  

Ultrasonography is used in the assessment and diagnosis of breast cancer and has traditionally 
been performed by a physician moving a hand-held device (called a transducer) over the breast, 
often referred to as hand-held ultrasonography (HHUS). In HHUS systems, the operator 
manually directs the transducer to the parts of the body being examined, which requires a high 
level of training and skill and creates a level of operator dependency. Ultrasonography uses high-
frequency soundwaves that ‘echo’ as they pass through various types of tissue. These echoes are 
used to create an image called a sonogram, which depicts the internal structures inside the body.  

Ultrasonography is a popular imaging technique because it is comfortable for patients, widely 
available at a relatively low cost, and does not involve the use of ionising radiation or contrasting 
agents (Geisel et al., 2018). Despite the appeal of ultrasonography to patients, concerns have 
been raised about the use of HHUS for screening given its lower rates of specificity compared 
with FFDM (Geisel et al., 2018). Furthermore, the application of HHUS for the early detection of 
breast cancer has been limited by a lack of technologists or physicians with the level of 
experience required to perform HHUS examinations (Geisel et al., 2018).  

ABUS was developed in response to the limitations of HHUS. In comparison with HHUS, ABUS 
systems can produce highly reproducible images without the need for highly trained clinicians 
to perform the examination (Geisel et al., 2018). This is because in ABUS, interpreting the 
captured images is separated from the process of capturing the images.  

There are currently two types of ABUS systems available. The first uses an automated arm to 
move a handheld transducer, creating 2D images of the breast; a technician guides this 
automated arm throughout the examination to ensure sufficient contact between the transducer 
and the breast. The second ABUS system uses a high-frequency, large-format transducer to 
obtain 3D volumetric images of the breast. Studies have shown ABUS to have equal or greater 
lesion detectability compared with HHUS (Gilbert & Selamoglu, 2017). Furthermore, the use of 
ABUS systems requires less training and is less operator dependent. This has made ABUS 
systems an attractive and promising alternative to traditional HHUS systems, with much of the 
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current research in this area focusing on improving its effectiveness in screening settings for 
women with dense breasts. 

3.2. Summary of key findings 

• ABUS is already in clinical use for breast cancer screening in the United States and 
Canada. There is no evidence to suggest that ABUS has been implemented into a 
national screening program at this stage. 

• The potential clinical value of ABUS in five to 10 years is not explicitly discussed in the 
literature, although findings have indicated its value as an adjunct screening tool for 
women with denser breasts. 

• Many studies have found that using ABUS and FFDM leads to significantly higher cancer 
detection rates for women with denser breasts than using digital mammography alone. 

• ABUS is likely to be highly acceptable to women as no safety issues have been identified 
and the examination process involves less discomfort than other modalities, including 
digital mammography. 

• There is no evidence that ABUS reduces deaths due to breast cancer through early 
detection. 

• ABUS has not been incorporated into any national breast screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women. 

3.3. Literature search results (number of studies returned) 

From the literature search a total of 130 abstracts of peer reviewed articles related to breast 
ultrasonography were identified. The abstracts were reviewed, and 111 articles were excluded 
because they related to HHUS only, or the use of ultrasonography in a symptomatic population 
of for diagnostic or treatment purposes. A total of 19 articles were reviewed to answer the 
research questions relating to the use of automated breast ultrasonography as a breast cancer 
screening tool.  

Systematic and/or literature reviews 

Eight articles were identified that were either systematic or literature reviews (Berg & 
Mendelson, 2014; Brem, Lenihan, Lieberman, & Torrente, 2015; Geisel, Raghu, & Hooley, 
2018; Gilbert & Selamoglu, 2017; Kornecki, 2011; Le-Petross & Shetty, 2011; Melnikow 
et al., 2016; and Youk & Kim, 2010).  

Prospective studies 

Eight prospective studies were identified (Berg et al., 2015;  Corsetti et al., 2011; 
Giuliano & Giuliano, 2013; Kim, Kim, Moon, Yoon & Kim, 2016; Kelly et al., 2010; Kelly & 
Richwald, 2011; Ohuchi et al., 2016; and Wilczek, Wilczek, Rasouliyan, & Leifland, 2016) 
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Retrospective studies 

Three retrospective studies were identified (Chang, Moon, Cho, Park & Kim, 2011; 
Hooley, Scoutt, & Philpotts, 2013; and Skaane et al., 2015) 

3.4. Study findings and discussion 

3.4.1. What stage of development or trial is this innovation at? 

Systematic and/or literature reviews 

Six systematic reviews were identified that discussed the current use of ABUS in breast cancer 
screening in asymptomatic women. Some of these reviews referred to studies of HHUS, the 
results of which are of relevance to ultrasonography in general. 

In their review, Le-Petross & Shetty (2011) referred to six cohort studies which found that the 
use of ultrasound as a screening technique identified primarily invasive cancers in 0.32% of 
women. The mean tumour size was 9.9mm, and 90% of cancers were node negative. Biopsy rate 
was high at 2.3% to 4.7%, with positive predictive value of 8.4% to 13.7% for those biopsied 
because of an abnormal finding on the ultrasound examination. They observed, however, that 
the added benefit of using this imaging modality to screen for breast cancer was lower in women 
aged 50-69 years.  

The Le-Petross and Shetty review also noted that ultrasound was able to identify small 
nonpalpable masses while undeterred by presence of dense breast tissue, which is an inherent 
limitation of mammography. However, unlike mammography, DCIS is not usually identified by 
ultrasound. Their review (as well as the review by Kornecki, 2011) noted that no study had 
advocated for ultrasound to be used as the only modality to screen for breast cancer. This was 
said to be due to the low yield of ultrasound alone detected breast cancers.  

Melnikow et al. (2016) looked at breast cancer detection outcomes for supplementary ABUS and 
HHUS in 13 studies. The cancer detection rate ranged from 1.9 to 15.2 per 1,000 screening 
examinations for ABUS (3 studies) and 0.4 to 18.9 per 1,000 for HHUS, with comparable recall 
rates ranging from 2 to 14%. While there was little to distinguish between the two ultrasound 
techniques in terms of cancer detection rates, they noted that the sensitivity rate for ABUS 
(68.0%) was lower than HHUS (which ranged from 80.0 to 100.0%), although specificity was 
higher for ABUS (92.0%) than HHUS (72.0 to 95.0%).  

While the previous study demonstrated equal or greater lesion detectability with ABUS than 
handheld imaging, Gilbert & Selamoglu (2017) raised concerns regarding false positives and 
high recall rates, which were higher when ultrasound was used as a supplementary tool to 
mammography compared with mammography alone. In one of the studies they referred to, 
recall rates with ultrasound alone were 20.9% in the prevalent round although they dropped to 
10.7% in subsequent rounds, compared to mammography recall rates of 11.5% and 9.4%. 
Increased recall rates were observed in three other studies. They also noted a reader study of 
185 cases, including 52 cancer cases that compared the use of mammography alone to 
mammography combined with ABUS. This study found that while using mammography 
combined with ABUS decreased specificity from 78.1% to 76.1%, sensitivity increased 
significantly from 57.9% to 74.1%. As the performance of the readers in this study was variable, 
it was stressed that training was essential (Gilbert & Selamoglu, 2017). 



 

 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 45 

 

In their literature review, Brem, Lenihan, Lieberman, & Torrente (2015) referred to several 
studies that also concluded that ABUS  improved breast cancer detection, noting increases in 
sensitivity for ABUS (plus FFDM) and FFDM alone ranging from 26.7% to 41%. The most 
prevalent additional cancers detected with ABUS were invasive node-negative cancers (93.3%).  

Commenting on reader performance, Berg & Mendelson, (2014) concluded that to meet future 
demand this screening technique would need to be done by trained technologists rather than 
physicians. They observed that while ultrasonography has been used for decades to assess 
masses detected by mammography, there has been a lack of specific training to ensure that it is 
being used appropriately and effectively. Training is essential to ensure comparable detection 
rates are achieved with HHUS and ABUS. They referred to promising evidence suggesting the use 
of ABUS as an adjunct to FFDM resulted in significantly higher cancer detection rates for women 
with denser breasts (with acceptably higher recall rates). However, more general population 
studies and large-scale multi-centre RCTs were needed to confirm the efficacy of ABUS in 
reducing mortality rates through the early detection of cancer. 

Prospective trials 

Ohuchi et al. (2016) examined the efficacy of adjunctive ultrasonography. As part of the Japan 
Strategic Anti-cancer Randomised Trial (J-Start), they screened 79,998 asymptomatic women 
aged between 40-49 years old, who were randomly assigned in two groups, one undergoing 
FFDM plus ABUS (the intervention group) and the other FFDM alone (the control group). They 
found that using ABUS as an adjunct to FFDM improved sensitivity from 77% to 95% (p=.0004), 
although specificity decreased to 87.7% from 91.4% (p<.0001). More cancers were detected in 
the intervention group than in the control group (184 [0·50%] vs 117 [0·32%], p=0·0003) and 
were more frequently stage 0 and I (144 [71·3%] vs 79 [52·0%], p=0·0194). Eighteen (0·05%) 
interval cancers were detected in the intervention group compared with 35 (0·10%) in the 
control group (p=0·034). Their results demonstrated the usefulness of ultrasonography in the 
early detection of breast cancer.   

One of the largest clinical trials of screening ultrasound to date was the American College of 
Radiology Imaging Network trial (ACRIN 6666). In the study, 2,662 asymptomatic women with 
high risk of cancer were randomly assigned to two groups, one receiving ultrasound and FFDM 
screening and the other FFDM screening alone (see Le-Petross & Shetty, 2011). They found that 
cancer detection was comparable for both ultrasound and FFDM (52.3 v 53.2%, p=.90), with 
ultrasonography detected cancers more likely invasive (91.4% for ultrasound compared to 
69.5% for FFDM). Invasive cancers detected by ultrasound were more frequently node-negative, 
64.2% for compared to 43.9% (p=.003). The study observed higher recall and biopsy rates and 
lower PPV of biopsy for ABUS (Berg et al., 2015).  

In their study, Kim, Kim, Moon, Yoon & Kim (2016) also observed that false positives were more 
common with ultrasound, with attendant discomfort, emotional stress and medical cost. 

Retrospective studies 

Current ABUS units, which are equipped with high-frequency broadband transducers, have the 
advantages of reproductivity, utility (in terms of surveying large areas of the breast), and 
reduced operator dependence compared to hand-held HHUS devices (Hooley, Scoutt & Philpotts, 
2013, and Chang, Moon, Cho, Park & Kim, 2011). However, it is unclear whether ABUS systems 
are more effective than HHUS devices at detecting cancer in asymptomatic women. For instance, 
Chang and colleagues retrospectively assessed radiologist performance with respect to the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/medical-ultrasonography
https://www.sciencedirect.com/topics/medicine-and-dentistry/stage-0
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detection of breast cancer initially detected by HHUS using 3D breast volume data obtained by 
ABUS. The sensitivities of the radiologists ranged from 57.1% to 78.6%, with false-positives 
rates ranging from 8.3% to 20.8%. They found that of the HHUS-detected cancers, only 57.1-
78.6% were identified with ABUS, which they attributed to the lack of experience that the 
radiologists had with the devices. In their view, a substantial level of experience and training 
was necessary to accurately interpret 3D breast volume data obtained by ABUS.  

3.4.2. What is its considered potential clinical value in five years? In 10 years? 

Systematic and/or literature reviews 

The potential clinical value of ABUS in five to 10 years is not explicitly discussed in the literature. 
Studies have tended to focus on women with dense breasts, where the cancer detection rate 
when ABUS is combined with mammography is significantly greater than when mammography 
is used alone. The results of these studies are summarised in section 3.4.3.  

3.4.3. Does this innovation show high sensitivity and specificity for women with dense 
breasts and women who have had breast surgery/augmentation compared to 
digital mammography? 

Systematic and/or literature reviews 

Gilbert & Selamoglu (2017) noted that many studies have demonstrated that ultrasound is a 
good screening tool for women with dense breast tissue. They referred to one study that 
detected 4.2 per 1,000 more cancers in women at increased risk and with dense breasts using 
ultrasound and mammography than mammography alone. Other studies referred to reported 
increases in cancer detection ranging from 3.4 to 4 per 1,000 examinations (Gilbert & Selamoglu, 
2017).  

In their paper, Youk & Kim (2010) agreed that ultrasound was an attractive adjunct to 
mammography in breast cancer screening for women with dense breasts because it was 
relatively inexpensive, required no contrast-medium injection, was well tolerated by patients, 
and was widely available for equipment as compared with MRI. Nonetheless, it had many 
limitations as a screening tool; including operator-dependence, the shortage of skilled operators, 
the inability of ultrasound alone to detect microcalcifications, and substantially higher false-
positive rates than mammography.  

Prospective studies 

Five prospective studies have examined whether ABUS is a good screening tool for women with 
dense breast tissue.  

Wilczek et al. (2016) evaluated the impact of ABUS when added to FFDM on breast cancer 
detection and recall rates in 1,668 asymptomatic women aged between 40 and 74 years with 
dense breast tissue examined at a high-volume breast cancer screening mammography centre. 
The authors found a statistically significant increase in the cancer detection rate when ABUS was 
used as an adjunct to FFDM; FFDM and ABUS detected a total of 6.6 cancers per 1000 compared 
to 4.2 per 1000 screening examinations for FFDM alone (p<.001). That said, the recall rate was 
also significantly increased with the addition of ABUS. FFDM alone resulted in a recall rate of 
13.8 per 1000 screening examinations with a false positive rate of 70%, compared to 22.8 per 
1000 with a false positive rate of 71% for FFDM + ABUS (p=.004). For FFDM alone the PPV1 
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percentage was 30% and the PPV2 and PPV3 percentage increased to 64%. For FFDM and ABUS, 
the PPV1 percentage was 29% and the PPV2 and PPV3 percentage increased to 48%. The PPV 
rates were not significantly different between FFDM alone and FFDM and ABUS at the p = .05 
level. Wilczek and colleagues concluded that using ABUS as an adjunct to FFDM ‘significantly 
improved invasive breast cancer detection rate with an acceptable recall increase’. 

A study conducted by the Huntington Memorial Hospital in California, USA, compared the use of 
FFDM alone with FFDM and ABUS in 4,419 women at elevated risk of breast cancer and/or 
dense breasts (Kelly et al., 2010). There was a statistically significant increase in the cancer 
detection rate when ABUS was used as an adjunct to FFDM. The sensitivity increased from 40% 
for FFDM alone to 81% for FFDM and ABUS. Furthermore, the number of detected invasive 
cancers, measuring 10mm or less, tripled from 7 to 21 when ABUS supplemented 
mammography. Although this study found an increase in recall rates for FFDM and ABUS (9.6%) 
compared with FFDM alone (4.2%), specificity of recalls was significantly higher for FFDM and 
ABUS (98.7%) compared with FDDM alone (95.2%; p<.05). Overall, Kelly et al. (2010) concluded 
that the combination of FFDM and ABUS produced significant improvements in cancer detection 
compared with FFDM alone. In their view, additional detection and the smaller size of invasive 
cancers justified the technology’s expense for women with dense breasts. 

A further two studies also reported promising results for the combination of mammography and 
ABUS. The Somo Insight Study of 15,318 women conducted between 2009 and 2011 sought to 
determine the improvement in early cancer detection by using ABUS with mammography 
compared with mammography alone in asymptomatic women with dense breasts (Brem et al., 
2015). Following screening, 112 women were diagnosed with cancer; 82 of these women were 
diagnosed through mammography alone and a further 30 were diagnosed following ABUS 
examinations. This meant that adding ABUS to mammography led to an additional 1.9 cancers 
being detected per 1000 women screened (p<.001). Of the 82 cancers detected with 
mammography and ABUS, 17 were also detected by mammography alone, while ABUS alone 
detected 30. These additional cancers detected were clinically significant, with 62% of the 
cancers detected with mammography being found to be invasive versus 93% of additional 
cancers detected with ABUS (p=.001). Sensitivity for mammography + ABUS increased by 27%  
compared with mammography alone, while the recall rate increased by 284.9 per 1000 women 
screened (p < .001) (Brem et al., 2015). 

The second study by Giuliano & Giuliano (2013) assessed the efficacy of FFDM compared with 
FFDM and ABUS using a sample of 3,418 asymptomatic women with denser breasts. They found 
that ABUS had a significantly greater cancer detection rate of 12.3 per 1000 women screened 
compared with FFDM which had a cancer detection rate of 4.6 per 1000. The sensitivity (76%) 
and specificity (98%) of FFDM alone was lower than the sensitivity (98%) and specificity 
(100%) of FFDM + ABUS; however, only the difference in specificity was significant at the p<.05 
level. The PPV was also significantly lower for FFDM alone (20%) compared to FFDM + ABUS 
(81%; p<.05). Based on these results, Giuliano and Giuliano concluded that the cost-benefit of 
supplementing FFDM with ABUS for women with denser breasts may be justified. 

Surveillance of intervals cancers provides a measure of breast screening efficacy. Corsetti et al. 
(2011) explored the interval cancer rates of women with dense breasts who underwent adjunct 
ultrasound screening. Their study reported on a retrospective cohort of 8865 women who had 
19,728 screening examinations (2001-2006): women with non-dense (BIRADS 1,2) breasts 
received mammography screening only, while women with dense (BIRADS 3, 4) breasts also 
received ultrasound. The underlying cancer rates (cancers observed within 1-year from 
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screening) were 6.3/1,000 screens in the non-dense breast group and 8.3/1,000 in the dense 
breast group. Screening sensitivity was 83.5% for mammography alone in non-dense breasts 
relative to 86.7% for mammography plus ultrasound in dense breasts. They observed that 
including ultrasound as an adjunct screening in women with dense breasts brought the interval 
cancer rate to similar levels as that for non-dense breasts. In their view, this suggested 
additional cancer detection by ultrasound was likely to improve screening benefit in dense 
breasts. 

Overall, studies have demonstrated that using ABUS as an adjunct to FFDM could result in a 
significant increase in the cancer detection rates for women with denser breasts. While the use 
of FFDM and ABUS can also lead to an increase in recall rates compared with FFDM alone, most 
studies suggested that rates of false positives for these recalls were equal to or lower than the 
rates of false positives for FFDM recalls. However, the studies considered that the increase in 
recall rates was acceptable given the increased cancer detection rates for FFDM and ABUS 
compared with FFDM alone. 

Retrospective studies 

A retrospective study by Skaane et al. (2015) tested how successful five radiologists were in 
distinguishing between cancer findings (n = 38) and normal or benign findings (n = 76) in 
screening results from 90 women, using both ABUS and FFDM. The sample included 48 cases of 
women with denser breasts (BIRADS 3 and 4), however results were not stratified by breast 
density. The radiologists first made assessments using ABUS only, and then used digital 
mammography plus ABUS. The average area under the curve (AUC) value for the five readers 
was significantly higher for FFDM and ABUS (0.823) compared with ABUS alone (0.730; p<.05), 
indicating that the ability to accurately detect cancer findings was significantly higher with 
FFDM and ABUS. The consistency of ratings between readers was also higher for FFDM and 
ABUS compared with ABUS alone, with kappa values ranging from 0.14 to 0.44 for the former 
and 0.07 to 0.34 for the latter. The average interpretation time for a normal bilateral ABUS 
examination was 9 minutes. Because of the greater levels of performance for FFDM and ABUS, 
Skaane and colleagues said that combined reading should be the standard if ABUS is 
implemented for women with dense breasts. 

3.4.4. What cost and safety findings have been reported? 

No safety risks regarding ABUS have been identified. 

In terms of cost, Brem et al. (2010) gave a figure of $300 per ultrasound screening but did not 
compare this to other imaging modalities or specify whether this was the cost of using ABUS of 
HHUS.  

The cost effectiveness of this imaging modality will be affected by reader performance. Wilczek 
et al. (2016) noted that ABUS has a standardised imaging procedure that can be performed by 
medical personnel after a short training and without the need for radiologists. This reduces the 
amount of time and training required to perform the scan compared with HHUS systems. The 
time required to perform HHUS has been estimated at 19 mins, whereas for ABUS it is estimated 
to take 5-7 mins (Kelly & Richwald, 2011). Therefore, ABUS is likely to have a strong impact on 
workflow and therefore practitioner cost, especially in practices or programs managing high 
volumes of ultrasound images. Youk & Kim (2010) also noted that ABUS was time-consuming 
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compared to mammography alone. They noted that a breast radiologist would read about 50 
studies per hour, which made ultrasound less efficient. 

3.4.5. Is there evidence that this innovation is more acceptable to women (in general 
and by ethnic group) compared to digital mammography? 

No specific research on the acceptability of ABUS compared with FFDM was identified; however, 
ABUS is likely to be appealing to women due to its accessibility, relatively low cost, good patient 
tolerance – the examination process involves less discomfort than FFDM (because of the lack of 
breast compression) – and lack of ionising radiation (Gilbert & Selamoglu, 2017). 

3.4.6. Does this technology reduce deaths due to breast cancer through early detection? 

There is no evidence yet that ABUS reduces deaths due to breast cancer through early detection. 
Le-Petross & Shetty (2011) said that because the incidence of cancers seen on ultrasound is low, 
to prove mortality rate reduction, a large cohort would have to be studied in a randomised 
blinded controlled clinical trial. These studies are unlikely to be conducted anytime soon.   

3.4.7. Has this innovation been implemented into a national screening program? If so, 
what outcomes have been achieved? What implementation issues arose? 

There is no evidence to suggest that ABUS has been implemented into a national screening 
program at this stage. However, ABUS has been in clinical use in the United States for several 
years and Health Canada has approved three ABUS systems, which have primarily been 
marketed for imaging dense breast tissue. Two of these have only limited approval and are 
intended only for use as an adjunct to mammography, rather than as a primary screening 
modality. 

In response to the limitations of using FFDM to screen dense breast, more than 30 states in the 
United States have passed breast density notification laws (Geisel et al. (2018)). These laws 
require radiologists to inform patients of their breast density and provide information about 
available alternative screening options, including ABUS (Geisel et al., 2018). The public 
education campaign ‘Are you Dense?’ has also increased the public’s awareness of 
ultrasonography as an adjunct to FFDM (Gilbert & Selamoglu, 2017). 

3.4.8. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there a consensus in position statements? 

The only published national position statement identified was that of New Zealand’s National 
Screening Unit, published in September 2014. It concluded: The National Screening Unit (NSU) 
does not support the use of ultrasound as a primary screening tool or the routine use of ultrasound 
as an adjunct screening tool in the BreastScreen Aotearoa (BSA) programme, as presently there is 
insufficient evidence to do so.1  

  

                                                             

1 https://www.nsu.govt.nz/system/files/page/position-statement-addressing-the-use-of-ultrasound-as-
a-breast-cancer-tool.pdf 

https://www.nsu.govt.nz/system/files/page/position-statement-addressing-the-use-of-ultrasound-as-a-breast-cancer-tool.pdf
https://www.nsu.govt.nz/system/files/page/position-statement-addressing-the-use-of-ultrasound-as-a-breast-cancer-tool.pdf
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4. CONTRAST ENHANCED MAMMOGRAPHY 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

Contrast-enhanced mammography was not discussed in the 2009 Bulletin on new and emerging 
technologies for breast cancer detection. 

4.1. What is contrast-enhanced mammography?  

In the literature, contrast-enhanced mammography (CEM) is commonly referred to as contrast 
enhanced spectral mammography (CESM) or contrast enhanced digital mammography (CEDM) 
and other variations including temporal CEM and contrast enhanced dual energy spectral 
mammography, for example. For the purposes of this review CEM is used to describe any of the 
above variations – unless there is a clear difference in the method of CEM used.  

CEM is a breast imaging modality that typically involves the following key steps (Bhimani et al., 
2017; Gilbert & Selamoglu, 2017; Lewis et al., 2017): 

1. Patient assessment, which includes a questionnaire to ensure the modality is 
appropriate for the patient – those who are pregnant (due to radiation exposure), have 
allergies to the contrast agent, or have poor renal function are unable to undergo CEM. 

2. Insertion of an intravenous (IV) line into the patient’s arm. 

3. Administration of a standard iodinated contrast agent by IV (concentration between 
300-370mg/ml, at approximately 1.5ml/kg of body weight) using a power injector. 

4. After at least 90 seconds, the patient is positioned for two standard mammography 
views (craniocaudal and mediolateral oblique) of each breast.  

5. Rather than a standard single energy mammogram, the CEM technology acquires dual-
energy image pairs in each projection. Since there is less than one second between the 
low-energy and high energy images, the imaging time is the same as that needed for a 
standard mammogram – additional projections may be obtained since optimally 
enhanced images can typically be obtained up to seven to 10 minutes following injection 

6. The contrast agent, which blocks x-rays, causes cancer to show up as a white area on the 
mammogram.  

7. Post-processing: Following the CEM, the contrast-enhanced subtraction images are 
produced using a weighted-logarithmic subtraction of the low-energy image from the 
high-energy image. Because the difference in iodine absorption between the images is 
larger than the difference in tissue absorption, this dual energy subtraction technique 
has the effect of increasing the visibility of the iodine while almost eliminating the 
visibility of background tissue.  

8. Image interpretation: The resulting images are then reviewed and interpreted by a 
radiologist. Low-energy images, which are almost identical to standard unenhanced 
digital mammograms, are also used in the interpretation. 



 

 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 51 

 

4.2. Summary of key findings  

• The use of CEM in population-based breast cancer screening of asymptomatic women is 
seen to have some potential in clinical studies, and there are current clinical trials 
related to CEM, including with a focus on screening. 

• There is currently no indication of the timeframe in which the full clinical potential of 
CEM for breast cancer screening will be realised; however, results from prospective 
clinical studies show that CEM reports higher percentages of sensitivity, specificity, 
positive predictive value and negative predictive value than conventional 
mammography. 

• Current research is not sufficient to be able to identify whether CEM as a breast 
imaging tool is able to reduce deaths due to breast cancer through early detection. 

• CEM has not been incorporated into any national breast screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women. 

4.3. Literature search results (number of studies returned) 

A total of 38 articles related to CEM were identified from the literature search. There were no 
population-based randomised controlled trials of CEM as a screening modality. Articles were 
excluded because they clearly indicated studying CEM in a symptomatic population, for 
diagnostic or treatment purposes, or were studying developing technologies that may have an 
application within CEM, such as developing contrast agents (eg, Karunamuni et al., 2016). Other 
articles were excluded because they could not be located or were dissertations. Additional 
articles were sourced in bibliographic searches. A total of 20 articles were then reviewed for 
CEM, most of which were from cohort studies.  

Systematic and/or literature reviews 

Three articles were identified that were either systematic or literature reviews (Gilbert 
& Selamoglu, 2017; Helvie, 2010; Lewis et al., 2017). One study gave a broad overview 
and discussion of the implementation of CEM in a clinical setting over five years, since 
2012, and incorporated a literature review (Bhimani et al., 2017). 

RCTs 

None identified. 

Prospective studies 

Seven prospective cohort studies on CEM were included in this review. These included 
women who participated in population-based breast screening programs with 
indeterminate or suspicious findings, so were recalled for further examination by CEM 
(Chou et al., 2015; Dromain et al., 2011; ElSaid, Farouk, Shetat, Khalifa, & Nada, 2015; 
Jochelson et al., 2013; Kariyappa, Gnanaprakasam, Anand, Krishnaswami, & 
Ramachandran, 2016; Luczynska et al., 2014; Phillips et al., 2017). 
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Retrospective studies 

Retrospective cohort studies involved reviewing CEM images obtained previously during 
screening follow-up (Houben et al., 2017; Lalji et al., 2015, 2016; Lewis et al., 2017; Patel, 
Gray, & Pockaj, 2017; Sogani et al., 2017; Tardivel et al., 2016; Yagil et al., 2016).  

Grey literature 

A search of the Australian New Zealand Clinical Trials Registry (ANZCTR) for “contrast enhanced 
mammography” yielded three results. One was related to CEM for assessing patients with dense 
breasts: 

• ‘Efficacy of contrast enhanced spectral mammography versus standard of care imaging 
test (DBT and ultrasound) in women with mammographically dense breast tissue 
recalled for investigation of abnormalities detected on routine screening 
mammograms’. The trial is reported to be in recruitment stages at the Royal Perth 
Hospital in Western Australia and involves 60 women between the ages of 18 and 65 
years with dense breast tissue and non-calcified lesions detected on screening 
mammography2.  

A search of the U.S. National Library of Medicine ClinicalTrials.gov website for “breast cancer” 
and “contrast enhanced mammography” identified 38 related clinical trials, with three studies 
related to CEM for breast cancer screening purposes, mostly in comparison to other imaging 
modalities:  

• ‘Comparison of whole breast screening ultrasound and contrast enhanced 
mammography for supplemental breast cancer screening’ at the Memorial Sloan 
Kettering Cancer Center, New York, New York, United States. The study started in 2014, 
is due to be completed in 2018, and involves 800 women age 30 years and older. 

• ‘Comparison of contrast enhanced mammography to breast MRI in screening patients 
at increased risk for breast cancer’ at the Memorial Sloan Kettering Cancer Center, New 
York, New York, United States. The study started in 2012, is due to be completed in 
2018, and involves 1000 women age 21 years and older. 

• ‘Comparison of contrast-enhanced spectral mammography (CESM) to MRI in screening 
high risk women for breast cancer’ at the Beth Israel Deaconess Medical Center, Boston, 
Massachusetts, United States. The study started in 2014, is due to be completed in 
2019, and involves 220 women age 30 years and older. 

4.4. Study findings and discussion 

What stage of development or trial is this innovation at? 

CEM as a modality for population-based breast cancer screening in clinical settings has not been 
realised yet, though there is evidence to suggest that it may be useful as an adjunct to digital 
mammography for screening purposes.  

                                                             

2 Available at: 
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369664&isReview=true  

http://www.clinicaltrials.gov/
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369664&isReview=true
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An early review of literature from 2010 suggested that the application of dual-energy CEM was 
clinically feasible, though the number of patients studied at that time was limited so clinical 
utility was yet to be established (Helvie, 2010). Bi-lateral dual-energy CEM was determined 
feasible in one very small study of 10 patients that ranged in age from 28 to 64 years (mean age 
of 51.6 years) who had been newly diagnosed with breast cancer (Jochelson et al., 2013). No 
adverse events were observed in the patients in this study, and the quality of the resulting CEM 
images were deemed satisfactory (Jochelson et al., 2013).  

Chou (2015) indicated that the prototype CEM technology they employed was at an early clinical 
stage, and noted that their mammography unit and imaging processing software underwent 
minor improvements during their study. They suggested that more technological advances and 
upgrades were needed for clinical application (Chou et al., 2015). However, Lalji et al. (2016) 
suggested that the introduction of CEM into clinical practice was safe and feasible, and noted it 
had been adopted for clinical use in some settings, but as a follow-up to screening, an 
assessment tool, or as diagnostic workup for breast cancer (eg, Bhimani et al., 2017; Lewis et al., 
2017).  

Sensitivity of CEM was reported to be in the range of 90 to 100% (ElSaid et al., 2015; Helvie, 
2010; Lalji et al., 2016; Lewis et al., 2017; Luczynska et al., 2014; McGuire et al., 2017; Tardivel et 
al., 2016) while specificity was reported to be between 41% and 74% (ElSaid et al., 2015; Lalji et 
al., 2016; Luczynska et al., 2014; Tardivel et al., 2016). Furthermore, Tardivel and colleagues 
reported positive predictive values (PPV) for CEM as 92% and negative predictive values (NPV) 
for CEM as 81% (Tardivel et al., 2016). Luczynska and colleagues reported PPV values at 77% 
and NPV values at 100%, compared to 68% and 47% for mammography respectively 
(Luczynska et al., 2014).  

Table 1 reports sensitivity, specificity, PPV and NPV increases between digital mammography 
and CESM for a recent study of 199 patients recalled from a Dutch breast screening program 
(Lalji et al., 2016): 
CEM Table 1. Sensitivity, specificity, PPV and NPV for CEM compared with FFDM to detect breast cancer (Lalji 
et al., 2016) 

Technique Sensitivity (%) Specificity (%) Positive predictive 
value (%) 

Negative 
predictive value 

(%) 

CESM 96.9 69.7 58.2 98.2 

FFDM 93 35.9 38.7 92.6 

CEM as an adjunct imaging modality with standard mammography was found to have higher 
sensitivity (93%) than mammography alone (78%) with no loss in specificity, and actual lesion 
size closer to histological size with CEM (Dromain et al., 2011).  

Low energy CEM images have been assessed as not inferior to full field digital mammography 
images (Lalji et al., 2015). CEM Table 2 (overleaf) outlines sensitivity and specificity findings 
from Lewis’s (2017) review compared to full-field digital mammography: 



 

 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 54 

 

  



 

 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 55 

 

CEM Table 2. Summary of sensitivity and specificity of CEM compared with FFDM to detect breast cancer 
(Lewis et al., 2017) 

Study No. of 
lesions 

CEM 
Sensitivity (%) 

CEM  
Specificity (%) 

FFDM 
Sensitivity (%) 

FFDM 
Specificity (%) 

Fallenberg et al. (2014) 80 100 - 97 - 

Badr et al. (2014) 37 95 85 - - 

Luczynska et al. (2014) 173 100 41 91 15 

Jochelson et al. (2013) 52 96 - 81 - 

Dromain et al. (2011) 142 93 63 78 58 

Examples of research to further refine CEM as a breast imaging tool included evaluating 
Background Parenchymal Enhancement (BPE) as a risk factor for breast cancer using CEM 
(Sogani et al., 2017), and a quantitative study of photon-counting detectors to support an 
accurate diagnosis of breast cancer, that assessed the feasibility of CEM to characterise 
neoangiogenically induced vascular changes in suspicious lesions (Ding & Molloi, 2017). Early 
research has demonstrated CAD CEM as a feasible complementary tool to potentially reduce 
false-positive findings during image reading (Patel et al., 2018).  

CEM does not appear to have been adopted into clinical use as a population-based screening 
strategy for breast cancer, though a number of studies report on it’s potential, and the need for 
further large-scale studies to determine whether CEM’s applicability as a screening modality is 
viable (Jochelson et al., 2013; Kariyappa et al., 2016; Lalji et al., 2016; Lewis et al., 2017). Several 
clinical trials are in the pipeline for CEM, including related to screening, as reported above. 

What is its considered potential clinical value in five years? In 10 years? 

The potential clinical value of CEM in five to 10 years is not explicitly discussed in the literature, 
though, as shown above, findings have indicated CEM’s value in terms of higher sensitivity and 
specificity in reading/interpretation compared with digital mammography.  

CEM has been described as a useful adjunct modality for patients recalled from screening 
mammography (Bhimani et al., 2017; Lalji et al., 2016). It may also improve clinical performance 
of mammography (Luczynska et al., 2014), and is seen to be crucial for accurate assessment 
(Lewis et al., 2017). CEM can also provide added value in cancer staging and assisting with 
unclear findings on conventional imaging (Tardivel et al., 2016). CEM is better at identifying 
lesions than mammography (Houben et al., 2017; Jochelson et al., 2013; Kariyappa et al., 2016). 
In mammographically visible lesions, CEM characterised the lesion, affirmed the finding and 
better demonstrated response to treatment (Kariyappa et al., 2016). Furthermore, CEM provides 
more accurate prediction of cancer size than digital mammography and is a useful adjunct to 
preoperative planning (McGuire et al., 2017).  
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While diagnosis is not the focus of this review, CEM has been assessed as comparable in 
diagnostic accuracy to contrast-enhanced MRI in patients with suspicious breast lesions (Chou 
et al., 2015). 

What cost and safety findings have been reported? 

In terms of cost, no studies were able to provide clear findings around the true cost of CEM 
compared to mammography, or other breast imaging modalities. A number of articles inferred 
that CEM had lower, or potentially lower costs than MRI (Chou et al., 2015; ElSaid et al., 2015; 
Helvie, 2010; Lewis et al., 2017) and molecular breast imaging (Lewis et al., 2017). CEM was also 
noted to be a faster procedure than MRI (Chou et al., 2015; ElSaid et al., 2015; Lewis et al., 2017; 
Tardivel et al., 2016) with similar results as MRI (Chou et al., 2015; Jochelson et al., 2013). 

With regards to safety, the main risks noted with CEM were potential severe allergy with the 
administered contrast solution (Bhimani et al., 2017; Helvie, 2010; Houben et al., 2017; Lewis et 
al., 2017), abnormalities in renal function (Bhimani et al., 2017; Lewis et al., 2017), and higher 
radiation exposure, especially if used as an adjunct with other radiation based imaging 
procedures (Houben et al., 2017), and/or for pregnant women (Chou et al., 2015; Lewis et al., 
2017). CESM was described as having a higher radiation dose than standard mammography – 
54% greater than the standard 2.65mGy (Gilbert & Selamoglu, 2017).  

These risks were potential barriers for CEM to be implemented as a routine population-based 
screening procedure. 

Does this innovation show high sensitivity and specificity for women with dense breasts 
and women who have had breast surgery/augmentation compared to digital 
mammography? 

At this stage, CEM shows some promise as a breast cancer screening tool for women with dense 
breasts, including improved sensitivity (Gilbert & Selamoglu, 2017).  

One study demonstrated CEM’s usefulness in identifying lesions in mammographically dense 
oedematous breasts with sensitivity of 95%, specificity of 73%, positive predictive value (PPV) 
of 88% and negative predictive value (NPV) of 88% (ElSaid et al., 2015). Four articles discussed 
the potential for CEM to assist with further evaluation of patients with dense breast tissue due to 
CEM, reporting similar sensitivity with dense breasts to MRI (Bhimani et al., 2017; Dromain et 
al., 2011; Helvie, 2010; Jochelson et al., 2013), greater than digital mammography.  

Sensitivity and specificity of CEM for women who have had breast surgery or augmentation was 
not discussed in the literature reviewed. 

Is there evidence that this innovation is more acceptable to women (in general and by 
ethnic group) compared to digital mammography? 

With regards to acceptability, some studies inferred that CEM was more tolerated (Bhimani et 
al., 2017; Jochelson et al., 2013) or well accepted by patients because they were able to have a 
complete assessment without remaining questionable findings on the same day (ElSaid et al., 
2015) though these inferences were not discussed explicitly in relation to digital mammography. 
CEM was also discussed as more appealing to patients who could not tolerate MRI (Helvie, 2010; 
Tardivel et al., 2016) or MBI (Lewis et al., 2017). There was no evidence that CEM was more 
acceptable to women compared to digital mammography. 
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However, one article reported on a survey of patient acceptability of CEM as part of a 
prospective study assessing performance characteristics of CEM related to breast MRI in high 
risk patients (Phillips et al., 2017). No ethnicity information was reported for these patients, but 
they were 30 years old or older, at high-risk for breast cancer3, and receiving screening breast 
MRI as part of their standard of care. Out of the 38 patients who had undergone CEM that 
completed a survey, 79% said that they preferred it over MRI, if the exams had equal sensitivity 
(Phillips et al., 2017). Furthermore, 89% of those patients said that they would be comfortable 
with receiving contrast as part of an annual screening test (Phillips et al., 2017). However, more 
research into patient preferences (Houben et al., 2017), particularly in comparison to 
mammography, was required. 

Does this technology reduce deaths due to breast cancer through early detection? 

There is no evidence to suggest that contrast enhanced mammography reduces deaths due to 
breast cancer through early detection, and further large studies are warranted to determine this. 

Has this innovation been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

There is no evidence to suggest that contrast enhanced mammography has been implemented 
into a national screening program. 

Has a national position statement been published about this innovation, and if so, what is 
the position? Is there consensus in position statements? 

One position paper was located for contrast enhanced mammography for the American College 
of Radiology Society of Breast Imaging. Their position is: 

“Based on its ability to image neovascularity in a fashion similar to MRI, 
CEDM is a promising technique for depicting cancers that are not visible 
on standard unenhanced mammography. It is approved for clinical use and 
is performed on commercial systems. Results of clinical studies show it to 
be significantly more sensitive and specific than mammography alone and 
to have sensitivity and specificity comparable to contrast-enhanced breast 
MRI. Current and proposed uses include additional evaluation of 
symptomatic patients or patients with abnormal screening examinations, 
assessing local extent of newly diagnosed breast cancers, problem solving, 
monitoring of neoadjuvant chemotherapy and high-risk screening”4 

There are no national position statements published about CEM as a screening test for the early 
detection of breast cancer in asymptomatic women.  

                                                             

3 High-risk patients were defined as patients with one of the following characteristics: ≥20% lifetime risk 
of breast cancer, BRCA mutation or other hereditary germ line mutation carrier, history of chest wall 
radiation, history of LCIS, history of breast cancer diagnosed at ≤40 years of age, history of breast cancer 
with 1st or 2nd degree relative with breast cancer and either patient or relative diagnosed at ≤50 years of 
age, history of breast cancer with mammographically occult lesions, or history of breast cancer for which a 
medical oncologist feels that breast MRI screening is important (Phillips et al., 2017). 
4 Available at https://www.sbi-
online.org/RESOURCES/WhitePapers/TabId/595/ArtMID/1617/ArticleID/601/Contrast-Enhanced-
Digital-Mammography.aspx  

https://www.sbi-online.org/RESOURCES/WhitePapers/TabId/595/ArtMID/1617/ArticleID/601/Contrast-Enhanced-Digital-Mammography.aspx
https://www.sbi-online.org/RESOURCES/WhitePapers/TabId/595/ArtMID/1617/ArticleID/601/Contrast-Enhanced-Digital-Mammography.aspx
https://www.sbi-online.org/RESOURCES/WhitePapers/TabId/595/ArtMID/1617/ArticleID/601/Contrast-Enhanced-Digital-Mammography.aspx
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5. DIGITAL BREAST TOMOSYNTHESIS 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

DBT was not discussed in the 2009 Bulletin on new and emerging technologies for breast cancer 
detection. 

5.1. What is digital breast tomosynthesis? 

DBT (also known as breast tomosynthesis, mammographic tomosynthesis or three 
dimensional/3D mammography) is an imaging technology that can be used to detect breast 
cancer and assess suspicious areas. DBT records between 11 and 25 low-dose images of a 
compressed breast depending on the imaging system used5. These images are reconstructed in 
1mm (or more) parallel slices to form a three-dimensional image of the breast. Radiologists (or 
other readers) then analyse these images to determine the presence of suspected abnormalities 
or to further investigate an area identified as suspicious on a mammogram. The thin cross-
sectional images created by DBT minimise the masking effects of breast tissue overlap, which 
can improve margin visibility for soft tissue tumours and increase lesion conspicuity. This 
potentially increases screening sensitivity and specificity (especially for women with more 
dense/more non-fatty breasts) as abnormalities are easier to see.  

Radiation dose varies depending on whether DBT is used alone, with integrated synthesised 
two-dimensional mammogram (s2DM6) image acquisition or is used as an adjunct to FFDM. We 
know that FFDM + DBT requires a higher radiation dose than FFDM alone to acquire images 
during a screening examination. Concerns about radiation dose plus the longer image 
acquisition and interpretation time required with FFDM + DBT means that this screening 
strategy could be potentially unacceptable to women and practitioners on the grounds of 
radiation dose. DBT + s2DM developed in response to this concern. DBT’s use (both in clinical 
and research settings) is evolving as is the evidence base underpinning its potential use as a 
screening tool grows.  

  

                                                             
5 Hologic’s Dimensions system takes 15 projections taken over approximately 4 seconds. Other CE mark or FDA-
approved systems use 9 or 25 projections taken over 3 to 25 seconds (Sechopoulos, 2013). 
6 s2DM is a two-dimensional mammogram that is generated from a DBT source data. These reconstructed images are 
similar to those captured in the mediolateral (MLO) and craniocaudal (CC) views used in a standard FFDM screening 
examination (Freer et al., 2017).  
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5.2. Summary of key findings  

• The Department of Health commissioned Allen + Clarke to undertake a literature 
review on the use of DBT in screening. The results of this literature review are included 
in this report for completeness. Further detail on the methodology is contained in the 
primary literature review document. 

• There is strong evidence that both FFDM + DBT and DBT + s2DM provide superior 
performance for improved cancer detection and that DBT may be a more sensitive test 
than FFDM alone. The magnitude of improvement may be affected by reading strategy 
(eg, double reading approaches result in higher detection rates compared to single 
reading).  

• There is emerging evidence that, used as an adjunct screen to FFDM, DBT can reduce 
recall rates and false positives results compared to FFDM alone; however, some 
inconsistent results between large prospective trials are reported (which could reflect 
the already low rates of recall seen in some population-based screening programs in 
which the trials are embedded). Further research investigating the comparative 
performance will help to unpick areas of uncertainty including the impact of 
double/single reading strategies and the impact of access to previous DBT images.  

• Further research may also help determine which combination of approaches (FFDM + 
DBT, two-view DBT + s2DM, DBTMLO + FFDM, or some form of DBT alone) achieves 
the best balance between radiation dose, sensitivity and specificity.  

• While DBT improves breast cancer detection with (potentially) lower rates of recall 
than FFDM alone, there is insufficient evidence about the long-term mortality benefit to 
support the use of DBT alone as a primary screening test. Few studies identified for this 
literature review investigated DBT alone compared to FFDM alone, although literature 
exploring different ways to integrate DBT into screening continues to develop quickly.  

• Current research is not sufficient to be able to identify whether DBT as a breast imaging 
tool is able to reduce deaths due to breast cancer through early detection, but it does 
increase cancer detection. 

• DBT has not yet been incorporated into any national screening programs; however, 
fully-paired trials embedded in population-based screening programs have been 
completed or are underway. In addition, DBT is available for private breast screening in 
several jurisdictions including Australia and New Zealand. 

5.3. Literature search results (number of studies returned) 

Information presented in Chapter 5.2 is based on a literature review on DBT which was also 
completed by Allen + Clarke in 2018. A summary of the returned literature is provided here. 
Further information on the methodology can be found in Allen + Clarke’s literature review. 

Allen + Clarke’s review found 85 relevant articles including two systematics reviews, 12 
narrative literature reviews and 42 studies. Primary studies already incorporated into high-
quality systematic or literature reviews were not assessed unless additional material not 
described in the systematic or literature review was included.  
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Systematic and/or literature reviews 

Two systematic reviews were identified: Coop et al. (2016) and Hodgson et al. (2016). 
We also referred to the following narrative literature reviews: Houssami (2017); Poplack 
(2017); Skaane (2017); Gilbert et al. (2016); Houssami (2015); Svahn et al. (2015A); 
Vedantham et al. (2015); and Houssami and Skaane (2013). 

RCTs 

We identified one RCT: Maxwell et al. (2017). We identified prospective fully-paired 
trials:  

• Oslo Tomosynthesis in Screening Trial (Skaane et al., 2014; Skaane et al., 2013B) 

• STORM trial (Bernardi & Houssami, 2017; Bernardi et al., 2016; Bernardi et al., 
2014; Caumo et al., 2014; Ciatto et al., 2013; Bernardi et al., 2012), and  

• Malmö trial (Lång et al., 2016A, 2016B) 

Other studies 

There were 56 other studies including: Aujero et al. (2017); Freer et al. (2017); Hunter et 
al. (2017); Liberatore et al. (2017); Miller et al. (2017); Pan et al. (2017); Powell et al. 
(2017); Rafferty et al. (2017); Rodriguez-Ruiz et al. (2017); Carbonaro et al. (2016); 
Conant et al. (2016); Kalra et al. (2016); McDonald et al. (2016); Sharpe et al. (2016); 
Wang et al. (2016); Zuckerman et al. (2016); Abdullah Suhaimi et al. (2015); Bonafede et 
al. (2015); Durand et al. (2015); Lourenco et al. (2015); McDonald et al. (2015); Shin et 
al. (2015); Sumkin et al. (2015); Dang et al. (2014); Destounis et al. (2014); Friedewald 
et al. (2014); Greenburg et al. (2014); Lee et al. (2014); McCarthy et al. (2014); Rose et al. 
(2014); Zuley et al. (2014); Haas et al. (2013); Sechopoulos (2013); Zuley et al. (2013); 
Gur et al., (2012), Olgar et al. (2012), Wallis et al. (2012); Svane et al. (2011); Gennaro et 
al. (2010); Svahn et al. (2010)  

Practical or technical evaluations and modelled analysis 

Four papers practical or technical evaluations were used: Bonsall et al. (2016); Strudley 
et al. (2015); Mungutroy et al. (2014) and Strudley et al. (2014).  

5.4. Summary of Allen + Clarke’s literature review on DBT 

What stage of development or trial is this innovation at? 

DBT (using Hologic’s Dimensions system) was first approved for use in breast cancer screening 
by the FDA in 2011. Since then, other systems capable of performing DBT have also been 
approved (including Siemens Mammomat and GE’s SenoClaire). DBT is not widely used as a 
primary screening tool within any national breast-screening program although some European 
jurisdictions including France and Monaco include DBT as a screening option (Liberatore et al., 
2017). DBT for screening is available to women in a range of private settings across different 
jurisdictions including in Australia and New Zealand. 
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What is its considered potential clinical value in five years? In 10 years? 

Cancer detection 

There is strong evidence that cancer detection rates (CDR) increase when using DBT compared 
to FFDM alone. Increases were reported in a range of studies (including large prospective trials) 
for different combinations of screening strategy including FFDM + DBT, DBT + s2DM, and 
DBTMLO compared to DMCC or FFDM alone. The direction of effect is consistent across study 
design, setting and location. There is variance in magnitude of effect.  

Pooled analysis based on data from the STORM and OTS trials (Coop et al., 2016; Hodgson et al., 
2016) reported a statistically significant increase of 2.43 cancers detected per 1000 screening 
examinations compared to FFDM alone. Adjunct screening with DBT also increases invasive 
cancer detection compared to FFDM alone. The incremental CDR and invasive CDR are similar 
for FFDM + DBT and DBT + s2DM: either detected significantly more cancers than FFDM alone. 
The Malmö trial also reported a significant increase in CDR: 2.6 cancers detected per 1000 
screening examinations using DBTMLO compared to FFDM alone (Lång et al., 2016A).  

DBT + s2DM also performed better, detecting 8.8 cancers per 1000 screening examinations 
compared to 6.3 with FFDM alone (Houssami, 2017). The evidence of comparative CDR 
performance for DBT + s2DM compared to FFDM + DBT was inconsistent but the CDR is similar 
in both screening strategies (in both smaller and larger studies). DBT + s2DM is a promising 
screening strategy, especially as it significantly reduces radiation dose. 

Data from retrospective studies showed a similar effect (that is, increases in CDR when DBT is 
used) but the increases were smaller than those reported from the prospective trials. 
Statistically significant CDR results from retrospective studies ranged from 1.6 to 1.9 cancers 
detected per 1000 screening examinations. Reasons for the lower CDR in the retrospective 
studies could relate to differences in reading strategy (eg, double reading compared to a single 
reader approach), participant selection, under-powering or other study design limitations.  

Types of cancer detected 

Earlier studies showed that FFDM + DBT’s performance did not appear to be superior for the 
detection of DCIS because of reduced visibility of microcalcifications (Houssami et al., 2016). 
Later studies are reporting no differences in the types of cancers detected by either FFDM + DBT 
or FFDM alone (Lång et al., 2016A). Further research is needed to determine DBT’s ability to 
detect microcalcifications. 

There was very limited data about the long-term mortality benefits, treatment morbidity or 
quality of life improvements associated with FFDM + DBT as a screening strategy. Almost no 
data exists on results for incident screening compared to prevalent screening, mortality benefit 
or surrogate indictors of this. Reliable data on interval cancer rate is also scarce.  

Recall rates and false positive recall rates 

The literature is not settled about the association between DBT and recall rates.  

Some results show that overall recall rates can be reduced when using FFDM + DBT compared 
with FFDM alone (often, smaller retrospective studies in screening programs offering annual 
screening and with higher program recall rates). Other prospective trials reported increased 
recall with double reading (either by two radiologists or through an arbitration process) but 
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reduced false positive rate. This may reflect that the overall false positive recall rates within 
screening programs where prospective trials are embedded are generally low anyway. 

There is less literature exploring associations between DBT + s2DM and the rate of false positive 
recalls although research generally favours a reduction in false positives with DBT + s2DM 
compared with both FFDM + DBT and FFDM alone. Like overall recall rates, there is some 
variance in the direction of effect. Results from a large prospective trial (STORM 2) showed a 
false positive recall rate for DBT + s2DM that was significantly greater for FFDM + DBT and 
FFDM alone. It is possible that the results from the STORM-2 trial relate to early experiences of 
incorporating s2DM into real-world screening practice for the first time without previous 
experience with s2DM images relative to FFDM. Secondary analysis from the STORM 2 trial 
indicated that false positive recall rates for FFDM + DBT and DBT + s2DM significantly reduced 
compared to those for FFDM. These results reflect developing and increasing knowledge in the 
use of FFDM + DBT, with some interpretation issues still present for s2DM. Interim results from 
the Malmö trial reported a reduction in the false positive recall rate of screens using DBT over 
the first 1.5 years, which also indicates that false positive recall could be associated with a 
learning curve in interpretation. 

Information from the smaller retrospective studies (most of which used single reading 
strategies) reported that recall rate was reduced with the addition of DBT to FFDM. Other trial 
data reported both reduced recall rate and reduced false positives with the addition or use of 
DBT. Differences in overall program false positive recall rates, reading strategy and arbitration 
protocols used to determine which women to recall from screening may account for some of the 
inconsistency. Increasing reader experience, knowledge of DBT and interpreting 3D images and 
availability of prior DBT images may also further decrease recall rates.  

PPV 

Overall results on PPV1 indicated that FFDM + DBT accurately detected proportionally more 
women recalled from screening who had breast cancer compared to FFDM alone. DBT + s2DM 
also showed promise of increased accuracy. Screening based on DBT + s2DM screening may 
correctly identify between one and three more women with diagnosable breast cancer for every 
100 women recalled, compared with recalls based on FFDM + DBT screening. Results on PPVs 

for biopsy recommended and biopsy performed indicate that FFDM + DBT was also more 
accurate the FFDM alone when used as a basis for recommending or performing biopsies. PPV2 -3 
results for DBT + s2DM are also promising but present more varied effect size than results for 
FFDM + DBT. 

What cost and safety findings have been reported? 

Radiation dose varies with the image acquisition process used (DBT or FFDM or combination 
mode), the number of and type of views, the use of automatic exposure control, positioning, 
breast size and composition, and by DBT system used.  

Much of the published evidence about the sensitivity and specificity of DBT is based on dual 
acquisition protocols (i.e., FFDM + DBT). Using average breast thickness, the radiation dose 
required to acquire acceptable images with FFDM + DBT is approximately double that of FFDM 
alone (2.98mGy compared to 1.49mGy). This ‘double dose’ is still within the dose limits set for 
overseas quality and safety standards but is higher than the per view dose limit set for the BSA 
program. The radiation dose for DBT compared with FFDM is lower: DBTMLO has about 70% of 
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the mean glandular dose (MGD) compared to FFDM alone. Two-view DBT results in a similar 
MGD compared with FFDM. Other possible single view combinations also result in lower MGD.  

Synthesised acquisition of 2D images halves the effective dose of combined FFDM + DBT, making 
it comparable to FFDM alone but with the improved detection rates associated with DBT. Initial 
studies indicate that the quality of images reconstructed from s2DM is acceptable, but further 
evidence is required to ensure that they can be used to accurately interpret microcalcifications. 

Having FFDM + DBT as the preferred screening strategy will have implications for accumulative 
dose if separate acquisitions are used for 2D and 3D images, if the screening interval is annual 
not biennial, or if women participate in mammography-based screening from their early 40s. 

The literature is dominated by studies that used modelled analyses to discuss the effect of DBT 
implementation on insurance programs in the United States. Modelled analyses showed that 
FFDM + DBT demonstrated economic favourability when considering clinical benefits like 
cancer detection and recall rates. Unfortunately, due to differences in health sector policy and 
service delivery, the modelled analyses may have limited applicability to the BSA program. No 
modelled analyses focused on the implementation of DBT have been conducted elsewhere.  

Implementation of DBT would require capital upgrade costs (eg, new equipment requirements), 
increased capacity for data storage or transmission, training and additional time for radiologists 
to read DBT images. Incremental costs could be offset by health system savings associated with 
increased cancer detection and reduced rates of recall (eg, the costs associated with recalling 
women unnecessarily, additional unnecessary biopsies and further assessment in cases where 
breast cancer is not present). At the time of this review, no detailed cost analysis had been 
reported. Cost is still something that needs to be balanced against potential benefits.   

Does this innovation show high sensitivity and specificity for women with dense breasts 
and women who have had breast surgery/augmentation compared to digital 
mammography? 

Findings for CDR stratified by breast density present results that may be surprising, given that 
DBT improves conspicuity and should, in theory, provide more quality images of more dense 
breasts. While results for FFDM + DBT show increased CDR for all women, data from prospective 
trials does not demonstrate a significant increase in CDR when comparing women with more 
dense breasts to those with less dense breasts. The use of breast density classification systems 
can result in unreliable allocation because density classification can be affected by factors like 
hormone levels, genetic factors, parity, use of oestrogen, place in menstrual cycle, use of 
tamoxifen, weight and (importantly) inter/intra reader variability. It is possible for women to be 
classified as having non-dense breasts (BIRADS 2) in one mammogram but be reclassified to 
having more dense breasts in the next mammogram (and vice versa). Research may therefore be 
comparing the most dense breasts to those that could be determined to be more fatty but still 
have significant areas of mammographic density. This could account for the smaller-than-
expected increase in CDR between women with more dense or less dense breasts. Research 
which reports CDR, recall rates and false positives by “extremely dense” (BIRADS 4) and “almost 
entirely fatty” (BIRADS 1) could result in clearer (and possibly truer) results on CDR differences. 

The age at which screening participation begins and screening interval may also influence 
sensitivity, specificity and overall lifetime radiation dose received. Studies reporting age 
stratification used different age bands (i.e., 10-year bands or groups like over 60 years/under 60 

https://www.uptodate.com/contents/tamoxifen-drug-information?source=see_link
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years). This impacts on our ability to draw useful conclusions about the possible relationships 
between age, and clinical outcomes or performance metrics associated with the use of DBT.  

Is there evidence that this innovation is more acceptable to women (in general and by 
ethnic group) compared to digital mammography? 

There was little evidence describing the acceptability to women or health practitioners on the 
use of DBT as a screening tool. To consider dimensions of acceptability, we sought evidence 
exploring women’s choice, compression time, and mental health outcomes. 

No data was presented on women’s overall choice to have either FFDM alone or DBT. However, 
there is anecdotal commentary that women may choose either FFDM + DBT or FFDM when 
given a choice. For example, 88% of study participants in Rose et al. (2013) consented to have 
FFDM + DBT (other study participants chose to have FFDM). When enrolling in Freer et al.’s 
study, women who are more informed about DBT either chose to have DBT because they were 
aware of its cancer detection benefits or chose not to have it because they were aware of the 
increased radiation dose associated with dual image acquisition (Freer et al., 2017). While not 
robust indicators of acceptability to women, these examples demonstrate that, if well-explained 
or if women are well-informed, they may choose DBT over FFDM.  

We infer that women may appreciate the lower compression that can be used to acquire 
acceptable images with DBTMLO compared to FFDM, but the literature is not settled on the best 
balance between reduced compression, image quality and women’s preference. Some early 
studies (cited in Coop et al., 2016) indicated that reducing compression from 4cm to 6cm did not 
adversely affect image quality. Sechopoulos (2013) reported that women preferred reduced 
compression (citing Fornvik et al., 2010), but the three participating radiologists did not as 
image quality was poorer in this study. Data from the STORM trial found that compression time 
is slightly longer for FFDM + DBT compared to DBT alone: 4m 3s (range = 3m 53s to 4m 18s) 
compared to 3m 13s (range = 3m 0 s to 3m 26s; p=.01) (Bernardi et al., 2012). This may increase 
overall pain/discomfort associated with this test but no information about women’s views on 
compression or reader feedback about image quality were presented. In the Malmö trial, Lång et 
al. (2016A) performed the DBT with reduced compression compared to FFDM to determine if 
reduced compression would compromise acceptable image acquisition and cancer detection. 
They reported that reduced compression of up to 50% was achieved in 90% of cases (with 
larger breast requiring more compression). Lång et al. reported women’s positive feedback 
about the reduced compression but did not collect specific data on this outcome.  

Two practical evaluations for the National Health Service (for the Hologic and GE DBT systems) 
reported that most radiologists considered compression times to be acceptable (although for the 
Hologic system 4/10 participating radiologists rated DBT compression time to be “worse” than 
FFDM alone with the remaining six noting that it was the same as FFDM: the dimensions of 
“worse” are not explained) (Bonsall et al., 2016; Mungutroy et al., 2014). Women’s comfort was 
rated average to excellent but, for GE SenoClaire, radiologists reported that they had received no 
feedback from women to indicate that the system was more uncomfortable that FFDM alone. 
None of the assessments of women’s comfort appear to be validated by women themselves.  

Abdullah Suhaimi et al. (2015) reported on a study of 130 Malaysian women’s anxiety during 
participation in a FFDM + DBT screening examination. Using a validated questionnaire (State-
Trait Anxiety Inventory’ Form Y-1), two study radiologists reported a reduction in women’s pain 
and anxiety with reduced compression (38.5 newtons compared to 93.0 newtons for standard 
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compression). They found that the mean anxiety score decreased with reduced compression 
(from 57.15 to 47.23; p<.001). The mean pain during procedure score reduced from 2.13 to 0.69 
(p<.001). The authors noted that image quality (as reported by the two participating 
radiologists) was not compromised. In addition, women’s anxiety at participating in a screening 
program or receiving screening results may be reduced if CDR is improved (with DBT) and if 
false positive results are reduced and unnecessary recalls are avoided. 

Does this technology reduce deaths due to breast cancer through early detection? 

Because long-term, adequately powered studies comparing DBT (alone or as an adjunct 
screening test) to FFDM are limited, there is limited data about DBT’s impact on interval cancer 
rate, mortality benefits and improvement in treatment morbidity compared to FFDM. Proxy 
measures (such tumour size at detection) are available but this does not provide a sense of the 
long-term mortality reduction benefits which DBT may offer compared to FFDM alone. Our 
review of the U.S. National Library of Medicine clinical trials database identified large active or 
recruiting studies investigating the role of DBT in population-based screening for asymptomatic 
women. Ongoing or upcoming trials include the: 

• Malmö Breast Tomosynthesis Screening Trial (a single site study in Sweden)7 

• Tomosynthesis Trial in Bergen (a single site study in Norway)8 

• Tomosynthesis Mammographic Imaging Screening Trial (a multi-armed, multicentre 
study in Canada)9 

• PROSPECTS trial in the United Kingdom10 

• TOSYMA study in Germany11, and  

• large Italian studies12.  

Future research may provide more information that can be used to better assess mortality 
benefit. 

Has this innovation been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

DBT is not used as a primary test for average-risk women in the BreastScreen Australia (BSA) 
program; however, access to DBT imaging for screening purposes is offered through some 
private radiology clinic settings. Outside the BSA program, DBT is increasingly used for the 
assessment of both screen-detected abnormalities and symptomatic breast cancers.   

                                                             
7 Study outcomes include interval cancer rate.  
8 Study outcomes focus on cancer detection, interval cancer rates, PPV, recall rates, prognostic and predictive tumour 
characteristics, radiation dose, interpretation time, and cost-effectiveness.  
9 Study outcomes include cancer detection, recall rates, interval cancers, prevalence of breast cancer subtypes, clinical 
characteristics of cancers, radiation dose, observer performance studies, BIRADS imaging features, breast cancer 
mortality, quality monitoring outcomes, PPV, health care utilisation, false positives/true negatives, biopsy rates and 
biomarker correlation.  
10 Study outcomes include the cost-effectiveness of breast cancer screening using FFDM + DBT compared to DBT + 
s2DM. 
11 Study outcomes include cancer detection rates including by cancer type and category, interval cancer rate, recall 
rate and PPV. 
12 Study outcomes include interval cancer, recall, PPV, biopsy rates, cancer detection and self-reported 
pain/discomfort during mammography. 
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Has a national position statement been published about this innovation, and if so, what is 
the position? Is there consensus in position statements? 

In 2014, the Community Care and Population Health Principal Committee of the Australian 
Health Ministers’ Advisory Council endorsed BSA’s position statement on DBT. This position 
statement was based on a literature review completed in 2009 (Department of Health and 
Ageing, 2009) and other papers published between 2009-13. The BSA position statement on 
DBT says that it: 

“has the potential to decrease the number of women who are recalled for 
further tests (reduce recall rates) and possibly increase the detection of 
breast cancer (improve sensitivity).”; however, the balance between 
“relative harms and benefits to well women of radiation dose, and the cost, 
efficiency and effectiveness of using this technology are as yet unclear”.  

The Standing Committee on Screening concluded that FFDM remained the most effective 
population screening technology for breast cancer.  

Seven countries and one region (including Brazil, Europe, France, Italy, Japan, New Zealand, the 
United Kingdom and the USA) also have current position papers describing views on the role of 
DBT (either as a stand-alone or adjunct screening tool) in breast cancer screening. The 
International Agency on Research into Cancer (IARC) has released a position statement which 
authors from 16 countries13 contributed to. Except for Brazil, all the position statements report 
the same conclusion: existing evidence favours FFDM + DBT compared to FFDM alone for key 
screening outcomes like CDR and recall rates. DBT is a promising technology that will have some 
role in the future of screening programs; however, concern remains around the increased 
radiation dose associated with dual acquisition (which may be addressed by s2DM), the lack of 
evidence on long-term performance clinical outcomes like interval cancer rates and the impact 
on longer-term cancer mortality reduction. Currently, all jurisdictions (except Brazil) 
recommend that further evidence from prospective trials and RCTs be acquired and used to 
inform decisions about integration into national screening programs.  

 

  

                                                             

13 Contributing authors to the Working Group represented Australia, Canada, Chile, Finland, France, Italy, 
Italy, The Netherlands, New Zealand, Nicaragua, and the USA. 
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6. DUCTOSCOPY 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The Bulletin advised that “it is unlikely that ductoscopy would ever be used as a routine tool for the 
diagnosis of breast cancer in asymptomatic women as it is an invasive and labour-intensive 
procedure” (National Horizon Scanning Unit, 2009, p.52). 

6.1. What is ductoscopy? 

Ductoscopy, commonly referred to as mammary ductoscopy, is a medical diagnostic procedure 
for viewing and collecting epithelial cells and other internal features of the milk ducts of the 
breast. While it may not be applicable in routine population-based screening programs, it has 
been described as an emerging diagnostic procedure for the following indications – nipple 
discharge, those at high-risk of developing breast cancer, or those with breast cancer undergoing 
lumpectomy (National Horizon Scanning Unit, 2009). 

Ductoscopy is a procedure rationalised by an assumption that the majority of benign and 
malignant lesions of the breast develop from the epithelium of the terminal duct-lobular unit 
(Tang, Twelves, Isacke, & Gui, 2011). The advantage of mammary ductoscopy is that it enables 
direct access to the ductal system via the nipple, where direct visualisation of the duct 
epithelium allows the clinician/operator to precisely locate any present intraductal lesions 
(Tang et al., 2011). It also means that ductal anatomy can be mapped in relation to any lesions 
and can therefore act as a guide for a surgeon, should a lesion need to be removed (Tang et al., 
2011). 

Ductoscopy can involve flexible or rigid scopes, with diameters ranging from 0.7 to 1.2mm 
which magnify tissues up to 60 times their normal size to produce high-quality images (Tang et 
al., 2011). The working channel in the microendoscope allows accessories such as hooks and 
rhomboids to be passed through the scope for localization and to gather specimens (Tang et al., 
2011). 

The general procedure of ductoscopy as a non-surgical (i.e., diagnostic) procedure includes the 
application of a local anaesthetic by topical gel to the nipple, or by periareolar infiltration or 
infusion down the cannulated nipple duct which facilitates relaxation of the major duct muscle 
sphincters (Tang et al., 2011). Clinicians/operators of the microendoscope should have a good 
understanding of the breast’s three dimensional anatomy to prevent loss of orientation and 
ensure that all possible ducts are explored, and not re-explored (Tang et al., 2011). Markers (for 
example, colour dyes, marking wires, clips), transillumination, and lacrimal probes can be used, 
or sheaths from the ductoscope (when disposable scopes are used) can be sutured into place, to 
allow pathologists to precisely identify lesions and undertake accurate assessment (Tang et al., 
2011). 

Benefits of the intraductal screening approach are discussed in terms of the procedure being a 
unique opportunity to sample the breast duct fluid in direct contact with epithelial cells that 
potentially undergo early malignant change, with the opportunity for direct visualisation and 
biopsy where necessary (Tang et al., 2011). Furthermore, detection of breast cancer may be 
possible in ductoscopy several years before the lesion is clinically palpable or visible 
mammographically – offering a promising medium for biomarker studies (Tang et al., 2011). 
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There are a number of limitations to mammary ductoscopy, including pain, inflammation and 
infection (though these are uncommon) (Tang et al., 2011). Ductoscopy can fail as a result of 
lumen occlusion from scarring and sclerosis, and access to peripheral lesions may be limited by 
the scope length, which is said to be around 6cm – one study reported that 37.3% of patients 
undergoing ductoscopy had lesions more than 5cm from the nipple (Tang et al., 2011). 
Perforation of breast ducts by microendoscope was also discussed as a limitation (Tang et al., 
2011). 

6.2. Summary of key findings 

• The role of ductoscopy in breast cancer screening of asymptomatic populations is not 
clear as most of the research focuses on its role in the assessment and diagnosis of 
DCIS. For example, recent research focuses on the use of ductoscopy with symptomatic 
patients that present with nipple discharge.  

• There is no indication that ductoscopy will achieve clinical potential as a screening tool. 
There is little evidence to suggest ductoscopy is acceptable to women as a screening 
modality. 

• Current research is not sufficient to be able to identify whether ductoscopy as a 
screening procedure can reduce deaths due to breast cancer through early detection. 

• Ductoscopy has not been incorporated into any national breast screening programs, 
nor are there any national position statements that have been released on their use in 
breast cancer screening for asymptomatic women. 

6.3. Literature search results (number of studies returned) 

Five articles were returned from the literature search that related to ductoscopy. None of the 
articles returned related to asymptomatic patients, therefore, we will only give a brief overview 
of the technology and its current application as an assessment and diagnostic tool. 

Systematic and/or literature reviews 

Two articles were systematic reviews. One was included in this review (Tang et al., 
2011), another could not be located. 

RCTs 

None identified. 

Prospective studies 

Three articles were prospective studies of symptomatic patients (eg, with nipple 
discharge). One was excluded as it related to diagnostic values of breast tumour 
biomarkers which was deemed out of scope for this topic, and another looked at the 
diagnostic accuracy of shear wave elastography, out of scope for the horizon scan. One 
article was included as it was a more recent study (Yang et al., 2014) than the review 
article described above (Tang et al., 2011). However, this prospective study reports on 
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the use of breast ductoscopy in evaluating nipple discharge, not screening for breast 
cancer (Yang et al., 2014). 

Retrospective studies 

None identified. 

Grey literature 

None identified. 

6.4. Study findings and discussion 

6.4.1. What stage of development or trial is this innovation at? 

Research so far has not focused on trialling the application of ductoscopy for population-based 
breast screening of asymptomatic women. 

Intraluminal microendoscopic technology has been developing and has improved over the past 
20 years (Tang et al., 2011). Earlier limitations of this technology were poor optical resolution, 
and access restriction of large-calibre scopes, which have now been overcome – and working 
channels within microendoscopes have been developed to give clinicians/operators the ability 
to perform biopsy of lesions and therapeutic procedures (Tang et al., 2011). Furthermore, 
earlier techniques such as air insufflation for distention of mammary ducts has been superseded 
by saline infusion for superior image quality (Tang et al., 2011).  

There is a lack of prospective randomised trials of ductoscopy with a breast screening 
application (Tang et al., 2011). While technology appears to have improved for microendoscopy 
of breast ducts, it is difficult to say whether it will have a breast screening application for 
asymptomatic populations in the future. 

6.4.2. What is its considered potential clinical value in five years? In 10 years? 

The potential for clinical use of ductoscopy as a breast cancer screening modality in 
asymptomatic populations is unlikely to be realised within the next five to 10 years, due to the 
lack of any prospective studies or randomised control trial studies in this population (Tang et al., 
2011). 

6.4.3. Does this innovation show high sensitivity and specificity? 

The intraductal approach of mammary ductoscopy is not discussed as a useful procedure for 
women with dense breasts or for women who have had breast surgery or augmentation (Tang et 
al., 2011; Yang et al., 2014), though it was suggested to have a potential role in screening 
individuals with a high risk for breast cancer, described as ‘uniquely motivated’, such as those 
who have a family history of breast cancer or are predisposed to breast cancer through a genetic 
mutation (Tang et al., 2011).  

6.4.4. Is there evidence that this innovation is more acceptable to women (in general 
and by ethnic group) compared to digital mammography? 

There is little evidence to suggest that ductoscopy is an acceptable procedure for women 
undergoing breast screening. 
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Acceptability of ductoscopy by women was not discussed by Tang and colleagues but their 
article discussed some uncommon potential complications and risks of ductoscopy, including 
pain, inflammation and infection and perforation of the duct which “may be a transient cause of 
post-procedure discomfort” (Tang et al., 2011, p.1714). Acceptability of ductoscopy was not 
discussed by Yang et al. (2014). 

6.4.5. What cost and safety findings have been reported? 

There were no findings reported with regards to cost of ductoscopy, though in terms of safety, 
the lack of radiation from the procedure is reported as a benefit in Tang and colleagues’ review 
(2011). 

In a study with 419 female patients with nipple discharge enrolled, ductoscopic investigation 
was successfully completed in 405 patients (96.7%). Fourteen patients (3.3%) were unable to 
have the ductoscopy device introduced due to nipple inversion, pain, or narrow canal. After 
ductoscopic investigation, no complication was reported for any of the 405 patients, thus, it was 
deemed a safe modality for patients with nipple discharge (Yang et al., 2014). 

6.4.6. Does this technology reduce deaths due to breast cancer through early detection? 

Based on this review, there is no evidence to suggest that ductoscopy reduces deaths due to 
breast cancer through early detection. 

6.4.7. Has this innovation been implemented into a national screening program? If so, 
what outcomes have been achieved? What implementation issues arose? 

Ductoscopy has not been implemented into any national screening programs for breast cancer. 

6.4.8. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there a consensus in position statements? 

No national position statements have been published about ductoscopy as a breast cancer 
screening tool. 
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7. MAGNETIC RESONANCE IMAGING 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The use of Magnetic Resonance Imaging was not discussed in the 2009 ANZHSN report. 

7.1. Introduction 

Magnetic resonance imaging (MRI) is a non-invasive medical test that uses magnetic fields to 
produce detailed cross-sectional images of tissue structures. MRI creates images of the breast by 
measuring changes in the movement of protons in fat and water with the application of changing 
magnetic fields and by utilizing the differences in tissue relaxation characteristics. The contrast 
between different types of breast tissues (fat, glandular tissue, lesions, etc.) depends on the 
mobility and the magnetic environment of the hydrogen atoms in water and fat, which 
contribute to the signal intensity (brightness) of the breast image. In the breast, this results in 
images showing predominantly parenchyma and fat, and lesions, if they are present.  

Contrast-enhanced MRI generally requires the use of a gadolinium-based contrast agent that is 
administered intravenously to provide better detail and detection of breast cancers and lesions. 
The use of contrast-enhanced MRI for breast cancer detection is based on the concept of tumour 
angiogenesis or neo-vascularity. That is, the blood vessels in cancerous tumours have increased 
permeability, which leads to prompt take up and release of gadolinium within the first one to 
two minutes after administration, leading to a pattern of rapid enhancement and washout on 
contrast-enhanced MRI. This dynamic rapid enhancement pattern helps to distinguish breast 
cancers from benign lesions. Because parenchymal tissue also enhances, but generally more 
slowly than malignant lesions, and because contrast can wash out rapidly from some tumours, 
the images must be looked at an earliest point of time after contrast injection (typically 1 to 3 
minutes). 

The technique of dynamic contrast-enhanced magnetic resonance imaging (DCE MRI), in which 
multiphase MRI scans are taken following the intravenous injection of a contrast agent, has been 
widely used in clinical practice, particularly as a screening modality for young women with a 
high risk for familial breast cancer and women with dense breasts. This technique is used 
because invasive cancer in the breast will generally show a more than 70% increase in signal 
intensity over baseline within the first 60-90 seconds because of large vessels in the tumour. 
This marked increase in signal intensity is then followed by a wash-out phase resulting from 
increased background parenchymal enhancement. DCE MRI ensures that appropriate images are 
captured during the relevant time slot for the best differentiation between breast cancer and 
normal surrounding tissue. 

During a contrast-enhanced MRI exam, a patient lies face down and the breasts are positioned 
into two holes of a “coil” as this improves the quality of the image. Scanning takes approximately 
30 to 45 minutes, and the MRI images are then interpreted by a radiologist. To reduce the 
influence of normal hormonal changes in the breast which can interfere with the accurate 
interpretation of the MRI examination, screening with MRI is best performed from day 7-10 of 
the menstrual cycle. MRI does not use X-rays, so it does not involve any radiation exposure. 

Breast MRI is commonly used for diagnostic purposes to evaluate abnormalities detected on 
mammography or ultrasound, assess the status of breast implants, perform presurgical breast 
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cancer staging, evaluate palpable breast lumps or other breast-related symptoms, guide breast 
biopsies, and monitor chemotherapy. It also has an application in a screening environment. 

In high-risk populations, screening with both MRI and mammography annually improves the 
sensitivity of screening but decreases specificity relative to screening with mammography alone.  

Research in high-risk woman has indicated that MRI is limited in its ability to identify non-
invasive breast cancer (eg, DCIS) and should therefore be used as an adjunct to, rather than a 
replacement for, mammography. The benefits and harms of adjunct screening breast MRI among 
women at less than high risk for breast cancer, however, are unclear.  

7.2. Summary of key findings  

• The availability of MRI as a supplementary examination to mammography offers a clear 
clinical benefit in some situations, particularly women with a high risk for breast 
cancer, especially those with dense breast tissue. Compared to mammography, MRI is 
less specific but more sensitive to detect small tumours in subjects with high breast 
cancer risk. MRI is a non-invasive technique that gives extremely clear, detailed images 
of soft-tissue structures that other imaging techniques cannot achieve. Unlike 
mammography, MRI does not expose the tissue to ionising radiation and the 
contrasting agent used in MRI is less likely to produce an allergic reaction that may 
occur during the use of iodine-based substances in other imaging modalities. 

• MRI has not been recommended for the general population due to high false-positive 
rates (which can lead to over-diagnosis with attendant cost and anxiety), high cost, 
time consumption, lack of adequate number of units, the need for experienced 
radiologists and lack of clinical utility. Some cancers, such as DCIS, are better detected 
by mammography than by MRI.  

• MRI is expensive, and although not painful the patient must remain still during the 
examination, which was an issue for claustrophobic women. Data has also emerged 
indicating there can be accumulation of gadolinium in patients who have undergone 
multiple contrast-enhanced MRI studies. 

• MRI has not been incorporated into any national breast screening programs. The 
American Cancer Society and the European Society of Breast Cancer Specialists have 
both released statements on the use of MRI in breast cancer screening. 

7.3. Literature search results (number of studies returned) 

From the literature search a total of 253 abstracts of peer reviewed articles related to MRI were 
identified. Abstract contents were then reviewed, and 151 articles were excluded because they 
indicated studying MRI in a symptomatic population, for diagnostic or treatment purposes, or 
were studying developing technologies that may have an application within MRI, such as 
developing contrast agents. 36 other articles were subsequently excluded because they could 
not be located or were dissertations. A total of 66 articles were reviewed to answer the key 
research questions relating to the use of MRI as a breast cancer screening tool.  
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Systematic and/or literature reviews 

22 papers were either systematic or literature reviews (Bick, 2015; Chhor & Mercado, 
2017; Cott Chubiz et al., 2013; Fischer et al., 2012; Gilbert & Selamoglu, 2017; 
Greenwood et al., 2013; Health Quality Ontario, 2016; Heller & Moy, 2016; Heywang-
Köbrunner, Hacker, & Sedlacek, 2013; Kanal & Tweedle, 2015; Kaniklidis, 2015; Lee et 
al., 2010; Lehman, 2010; Le-Petross & Shetty, 2011; Mainiero et al., 2016; McLaughlin, 
Mittendorf, Bleicher, McCready, & King, 2014; Mehnati & Tirtash, 2015; Melnikow et al., 
2016; Morrow, Waters & Morris, 2011; O’Flynn, Ledger & de Souza, 2015; Partridge, 
Nissan, Rahbar, Kitsch, & Sigmund, 2017; Porembka, Seiler, & Sharma, 2016; Rahbar & 
Patridge, 2016; Runge, 2013; Salem, Kamal, Mansour, Salah and Wessam, 2013; 
Sardanelli et al., 2010; Sathya & Geetha, 2013; Sutcliffe & Otto, 2013; Wellings, 
Vassiliades & Abdalla et al., 2016; and Zhang & Ren, 2017).  

RCTs 

None identified 

Prospective studies 

19 prospective studies were identified (Badan et al., 2016; Berg et al., 2012; Brandzel et 
al., 2017; Brédart et al., 2012; Evans et al., 2016; Evans et al., 2014; King et al., 2013; Kuhl 
et al., 2014; Lehman et al., 2016; Lourenco, Donegan, Khalil, & Mainiero, 2014; McDonald 
et al., 2016; Møller et al., 2013; Moschetta, Telegrafo, Rella, Stabile Ianora, & Angelelli, 
2016; Ng et al., 2013; Passaperuma et al., 2012; Rijnsburger et al., 2010; Saadatman et al., 
2013; Sardanelli et al., 2011; and Tieu et al., 2014).  

Retrospective studies 

27 retrospective studies were identified (Ahern et al., 2014; Chiarelli et al., 2014; de 
Bock et al., 2013; Destounis, Arieno, & Morgan, 2016; Freitas et al., 2013; Friedlander, 
Roth & Gavenonis, 2011; Giess, Poole, Chikarmane, Sippo & Birdwell, 2015; Grimm et al., 
2015; Gubern-Merida et al., 2015; Gweon et al., 2014; Harvey et al., 2016; Jain, Jain, Hyzy, 
& Werth, 2017; Lowry et al., 2012; Moftah et al., 2014; Niell et al., 2014; Pederson et al., 
2015; and Santoro, Podo & Sardanelli, 2014). 

Grey literature 

A search of the U.S. National Library of Medicine ClinicalTrials.gov website for “breast 
cancer screening” and “magnetic resonance imaging” identified 19 related clinical trials, 
with six studies related to MRI for breast cancer screening purposes:  

• ‘Evaluation of Gadolinium Deposits in Healthy Women Participating in a High Risk 
Screening Program for Early Breast Cancer Detection’ sponsored by the Medical 
University of Vienna, Austria. The study, which is due to be completed in April 
2018, seeks to determine whether patients at high risk to develop breast cancer 
having received at least 6 cumulative dosages of macrocyclic Gd-based contrast 
media in the context of breast cancer screening by means of contrast-enhanced 
MRI. 

• ‘Contrast-enhanced MR Imaging as a Breast Cancer Screening in Women at 
Intermediate Risk (MRIB)’ sponsored by the IST Istituto Nazionale per la Ricerca 

http://www.clinicaltrials.gov/
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sul Cancro, Genoa, Italy. The randomised control trial, which was due to be 
completed in April 2016, seeks to evaluate the performance of MRI, in terms of 
sensitivity, specificity, and predictive value, in the screening of women at 
intermediate risk of breast cancer. 

• ‘Initial Evaluation of Ultra FAST Breast Magnetic Resonance in Breast Cancer 
Screening: Comparative Study With Mammography and Ultrasound’ sponsored by 
Brugmann University Hospital, Belgium. The study, which is due to be completed 
in January 2020, seeks to evaluate the performance of FAST breast magnetic 
resonance in normal screening population. 

• ‘MRI for Detecting Cancer in Women Who Are at High Risk of Developing Breast 
Cancer’ sponsored by the University of Pennsylvania, United States. This study 
seeks to explore the effectiveness of MRI scans in women who are at high risk for 
developing breast cancer. 

• ‘Breast Cancer Screening With MRI in Women Aged 50-75 Years With Extremely 
Dense Breast Tissue: the DENSE Trial’ sponsored by UMC Utrecht, the Netherlands. 
This study, which is due to be completed in December 2019, seeks to determine 
the cost-effectiveness of biennial screening with mammography and MRI 
compared to mammography alone in women aged 50-75 years and who show > 
75% mammographic density. 

• ‘Feasibility of Short Breast MRI (SBMRI) for Screening Patients at High Risk for 
Breast Cancer’ sponsored by University of Texas MD Anderson Cancer Center, 
Houston, Texas, United States. This study, which is due to be completed in 2020, 
seeks to determine if a short breast MRI scan (about 10 minutes) can be used for 
breast cancer screening in high risk people and to learn if it is as effective as a 
routine breast MRI scan (30-60 minutes). 

7.4. Study findings and discussion 

7.4.1. What stage of development or trial is this innovation at?  

Mammography is considered the standard test for breast cancer screening throughout the 
world, and has been shown to decrease breast cancer mortality But the sensitivity of 
mammography is lower in young women, women with dense breast tissue, and women who 
carry the genetic BRCA mutations, and this has led to a search for alternative methods of 
screening in women at a high-risk of breast cancer (Morrow, Waters, & Morris, 2011). MRI 
reveals at least 10 additional cancers per 1,000 women screened after mammography and is a 
useful adjunct screening strategy for women who are at high risk for breast cancer (although the 
biological significance of these cancers is unknown). The following section looks at those papers 
that examine the current state of use of MRI as a breast cancer screening tool. 

  

http://densebreast-info.org/breast-mammography-tomosynthesis.aspx
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Sensitivity 

Systematic and literature reviews  

Five systematic reviews discussed the rate of sensitivity. In a recent literature review of 11 
papers, Zhang & Ren (2017) found a pooled sensitivity of 92.0% for asymptomatic women 
undergoing MRI breast screening. This was 17% higher than the average sensitivity rate for 
mammography. These figures compared favourably to a study by Heywang-Köbrunner, Hacker, 
& Sedlacek. (2013) who found sensitivities ranging from 90 to 91%. Similar results were 
reported in the High Breast Cancer Risk Italian 1 study, in which 18 screening centres enrolled 
501 women and performed 1,592 studies (3.2/women) (Sardanelli et al., 2011).  

Most cancers detected by MRI screening were between 10 and 20mm in size and were invasive 
cancers (Heywang-Köbrunner et al., 2013, Le-Petross & Shetty, 2011). Despite the small size of 
the tumours, 12 to 26% of these patients had a node-positive disease at the time of detection. Le-
Petross & Shetty (2011) considered that this raised the question of whether an annual screening 
interval was adequate, although they acknowledged that the node-disease may be simply related 
to the aggressiveness of the detected breast cancer.  

However, the ability of MRI to detect DCIS was not so clear (Heywang-Köbrunner et al., 2013, 
and Morrow et al., 2011), with detection rates being reported as low as 40%. The literature 
suggests that MRI should not be used to exclude malignancy in cases with suspicious 
microcalcifications. Instead, mammography should remain the preferred modality for the 
detection of DCIS, particularly given its superiority in the detection of microcalcifications.  

Retrospective observational studies 

In their study of 135 asymptomatic women who underwent MRI screening as part of a 
mammogram follow-up, Bick et al. (2015) reported a sensitivity of 100%, which they attributed 
to two factors. Many cases of DCIS associated with microcalcifications did not enter their study 
because they would have been referred straight to biopsy, reducing the potential for false-
negatives. The other factor was that the MRI was read in full knowledge of the prior screening 
mammogram. This would have improved the sensitivity of their results.  

Several studies have examined the rate of sensitivity of asymptomatic women falling within 
different population groups based on their risk of contracting breast cancer. 

MRI in women with a high lifetime risk of breast cancer 

Rahbar & Partridge, (2016) cited multiple studies that found that MRI had the highest sensitivity 
of any imaging modality for breast cancer detection in asymptomatic high-risk women – defined 
as women with a lifetime risk of breast cancer greater than 20-25%. This includes individuals 
with a known BRCA1 and BRCA2 mutation and their first-degree relatives, women who 
underwent therapeutic chest radiation in their youth and those with specific genetic mutations 
known to increase the risk of breast cancer such as Li-Fraumeni syndrome (TP53 gene 
mutations) and Cowden and Bannayan-Riley-Ruvalcaba syndromes (PTEN gene mutations).  

Most studies evaluating the sensitivity of MRI screening have focused on this population subset 
(high risk women). In the studies Heller & Moy (2016) reviewed, MRI sensitivity (77.0%-92.6%) 
was consistently greater than for mammography (32.6%-50.0%) for the screening of high-risk 
women. The Wellings, Vassiliades & Abdalla (2016) review reported similar rates of sensitivity 
(77% to 100% for MRI compared to 33% to 56% for mammography). Sardanelli et al., (2011) 
observed that MRI outperformed mammography and ultrasound, whether used separately or in 
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combination, for screening of women at high risk of cancer, whether younger or older than 50 
years. Morrow, Waters, & Morris, (2011) observed similar results finding that across all the 
papers they reviewed sensitivity was only 32% for mammography, while MRI sensitivity was 
75%. Combining the two procedures increased sensitivity to 84%.  

BRCA 1 and BRCA 2: Heller & Moy (2016) commented on the sensitivity of MRI screening on BRCA 
mutation carriers. One of the trials they cited reported a 91% sensitivity for cancer detection in 
all women undergoing MRI screening versus 31% with mammograms, but a 100% sensitivity in 
known mutation carriers versus 25% sensitivity with mammography.  

Comparing BRCA1 and BRCA2 mutation carriers, Heller & Moy (2016) noted that the MRI was 
better at detecting cancers in BRCA1 carriers than detecting cancers in BRCA2 carriers, which 
were better detected using mammography. In their view, this result supported calls to tailor 
screening regimens to individual mutation types.  

It is important to note that the results from these studies cannot be directly extrapolated to a 
lower-risk population, as MRI’s sensitivity and specificity has been found to differ based on risk 
status (Health Quality Ontario, 2016). Additionally, women at high risk for breast cancer exhibit 
altered tumour histology (microscopic anatomy) and morphology (tissue structure) on 
mammography and have a higher rate of interval cancers than those at less than high risk. The 
benefit of MRI screening in populations other than high risk needs to be examined separately 
(Health Quality Ontario, 2016).  

Chest Irradiation: Screening breast MRI is recommended for women who underwent therapeutic 
chest radiation (eg, for Hodgkin lymphoma (HL)) during their youth because up to 25% of 
women so treated develop breast cancer by ages 40-45 (Heller & Moy, 2016). In a prospective 
study on 148 women treated with chest radiation for HL during their youth and were 8 years 
beyond treatment, Ng et al., (2013) found no difference in sensitivity between MRI (68.0%) 
versus mammography (67.0%). However, when the modalities were combined, sensitivity 
increased to 94.0%. Similar results were reported in two other studies (Tieu et al., 2014, and 
Freitas et al., 2013).  

MRI use for women at moderate risk 

Women who have a family or personal history of breast cancer, those with a history of lobular 
carcinoma in situ (LCIS) and those with heterogeneously dense breasts are at moderate risk of 
developing breast cancer (lifetime risk of between 15 to 20%).  

Heller & Moy, (2016) cited four studies that examined the screening of asymptomatic women 
with a family or personal history of breast cancer (Destounis, Arieno, & Morgan, 2016; Lehman 
et al., 2016; Gweon et al., 2014; and Giess, Poole, Chikarmane, Sippo, & Birdwell, 2015). These 
studies found no difference in the rate of sensitivity between women with a family or personal 
history of breast cancer and those with no family history or genetic risk of cancer. Given the high 
rate of false-positive MRI screenings (with attendant cost and anxiety) , Sutcliffe & Otto, (2013) 
felt referring clinicians needed to be cautious before referring women with a family or personal 
history of breast cancer for MRI screening. They recommended that, where possible, such 
patients should be referred to a cancer genetics counsellor to assess whether they have a high-
risk of developing breast cancer (as opposed to merely a moderate risk). Lee et al., (2010) made 
a similar recommendation.  
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Friedlander, Roth & Gavenonis (2011) found that screening MRI identifies breast cancer in 
asymptomatic women diagnosed with LCIS at a rate like that shown in high-risk population 
groups. While this study excluded women with an abnormality depicted on other imaging 
modalities, it did not indicate if all women received mammography (Health Quality Ontario, 
2016). This limited the study’s applicability to a screening context.  

King et al., (2013) analysed 776 cases of asymptomatic women diagnosed with LCIS to compare 
rates of cancer detection with or without MRI. Analysing results from1, 2 and 3 years post 
diagnosis screening, they found that MRI failed to demonstrate increased cancer detection rates 
among women (p = 0.23, 0.26 and 0.13 respectively). They concluded that a diagnosis of LCIS 
remains a significant risk factor for breast cancer, the routine use of MRI does not result in 
increased cancer detection rates (short-term) which illustrated the need of defining optimal 
screening strategies for high-risk patients based on tumour biology rather than numerical risk. 

It is noted, however, that details regarding the use of mammography and MRI screening were 
not described in this paper, and insufficient information was provided to determine how and 
when MRI was performed relative to mammography screening (Health Quality Ontario, 2016). 
The cancer detection rate was also substantially higher than that reported by McLaughlin, 
Mittendorf, Bleicher, McCready & King (2014) who identified three other studies that evaluated 
the role of MRI in patients with LCIS that collectively documented an incremental annual 
increase in the cancer detection rate of around 4%. 

Again, Sutcliffe & Otto, (2013) stressed the need for caution and suggested that women with 
LCIS should only be referred for MRI screening on a case-by-case basis.  

MRI use for women at low-risk   

Although the use of MRI to screen asymptomatic women with low risk of breast cancer (lifetime 
risk less than 15%) is not encouraged, Heller & Moy (2016) identified one study that observed a 
cancer detection rate of 11 per 1000 screening examinations in this population group. They felt 
that the development of abbreviated MRI screening examinations (which are described in detail 
below) could enable screening MRI to be expanded to a wider pool of women. 

Heywang-Köbrunner et al. (2013) could not identify any studies that examined the sensitivity of 
MRI screening in low-risk women. Given the low yearly incidence of breast cancer in the general 
population (<3/1000), the low specificity of MRI and the associated higher screening costs, they 
said MRI screening of women at low risk was not sensible. 

Interval cancer rate 

Only one study discussed interval cancer rate of MRI. Le-Petross & Shetty (2011) noted that 
despite the addition of MRI to mammography screening in asymptomatic high-risk women, 
some published trials still report cancers developing between the screening intervals (i.e., 
interval cancer) at a rate of 2% to 9%. They noted that the screening regimens had one-year 
intervals, with MRI and mammography performed within 90 days of one another. They said that 
staggering examinations at 6-month intervals could decrease the incidence of interval cancers. 
This will be discussed later in this section.  
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Positive predictive value (PPV) 

PPV1 (cancers diagnosed per the number of women recalled from screening) 

Overall results on PPV1 indicate that, on average, MRI accurately detected proportionally more 
women recalled from screening who had breast cancer compared to FFDM alone. Three studies 
reported that on average, recalls based on MRI screening are correctly identifying an additional 
five women with diagnosable breast cancer for every 100 women recalled, compared with FFDM 
alone (Chiarelli et al., 2014, Niell et al., 2014 and Friedlander et al., 2011).  

PPV2 (cancers diagnosed per the number of biopsies recommended) 

Only two studies reported on the rate of PPV2. The rate of cancers diagnosed from the number of 
biopsies that were recommended varied from 18.5% (Friedlander et al., 2011) to 24% (Niell et 
al., 2014). No comparison was given in either study to the rate of PPV2 for FFDM alone. 

PPV3 (cancers diagnosed per the number of biopsies performed) 

The rate of PPV3 was reported in three studies (Chiarelli et al., 2014, Niell et al., 2014, and 
Friedlander et al. 2011), who found that the rate of cancers diagnosed after biopsy following 
MRI screening (ranging from 23.8% to 26.1%) was higher than the rate following 
mammography screening (16.9%). 

Specificity  

From the 2 mega-analyses they reviewed, Heywang-Köbrunner et al. (2013) found that the rate 
of specificity for MRI as a screening tool was only 72% to 75%.  

Four studies compared the rate of specificity between MRI and mammography. Zhang & Ren 
(2017) found an average 70.0% for women undergoing MRI breast screening returned a 
negative test result for the disease, which was like that of mammography (71.0%). Wellings et al. 
(2016) also found a lower rate of specificity for MRI (79% to 97%) that that of mammography 
(91% to 99%). Le-Petross & Shetty (2011) observed similar rates (MRI ranged from 79% to 
95% and mammography ranged from 93% to 99%). In contrast to these studies, Morrow et al. 
(2011) reported that the rate of specificity for mammography (98.5%) was only marginally 
higher than the specificity of MRI (96.1%).  

Heywang-Köbrunner et al. (2013) did not support the use of MRI in general population 
screening. In their view, its low specificity would lead to additional biopsies that ultimately yield 
benign pathology (with attendant cost and anxiety) or short-term follow-up in a significant 
proportion of women. The high cost of using MRI also worked against its use as a general 
population screening technique.  

False positive recall rate 

False positive recall rate is a significant concern as women who are recalled for further 
investigation often experience high levels of anxiety, along with the inconvenience and expense 
of attending a further appointment that bring no health benefit to the woman. 

MRI is associated with a higher false positive rate because of its higher sensitivity but lower 
specificity, which might lead to additional scans and biopsies with their attendant risks of 
increased cost and anxiety. Le-Petross & Shetty (2011) referred to one study that compared 
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biopsy rate following MRI and mammogram screening on 195 women. The study found a biopsy 
rate of 8.5% for MRI but only 2.2% for mammography screening.  

Examining the effectiveness of the Ontario Breast Screening Program (which screened 2,207 
asymptomatic women with high risk of breast cancer), Chiarelli et al. (2014) found that the 
recall rate was significantly higher for MRI (15.1%) compared with mammography (6.4%), 
which was consistent with other prospective studies.  

When to Screen/Screening Intervals/When to Stop Screening 

In terms of when to start screening with MRI, the Society for Breast Imaging and the American 
College of Radiology recommend MRI starting at age 30 or 10 years earlier than the age of 
diagnosis of the youngest family member with breast cancer but not before age 25.  

Once screening commences, debate exists about whether screening mammogram and MRI 
should be completed together or alternated every 6 months. Cott Chubiz et al. (2013) and Lowry 
et al., (2012) both proposed alternating screening mammography and breast MRI every 6 
months starting at age 30. The advantage of alternating screening is to decrease the incidence of 
interval cancers as well as to offer the patient the psychological reassurance of being observed 
every 6 months. The proposed screening regimen also provided the most favourable balance of 
clinical benefit, radiation exposure and cost-effectiveness compared to annual screening. 
McLaughlin et al., (2014) noted, however, that in the MRI screening trials employed in these 
studies, the interval cancer rate was less than 3% when annual mammogram and MRI 
screenings were performed together. It was unlikely that an alternating strategy could further 
improve this rate.  

Heller & Moy, (2016) reported a lack of consensus on when and if to stop MRI screening; some 
national guidelines recommend a re-evaluation of or end to MRI screening at age 50 (UK/ 
Netherlands) based on breast density (UK), arising in part from the assumption that older 
women will have lower density breasts and will therefore be more likely to have 
mammographically visible cancers. 

7.4.2. What are their considered potential clinical value in five years? In 10 years? 

The potential clinical value of MRI in five to 10 years is not explicitly discussed, though studies 
have explored various technological advances in MRI to assess if these innovations could lead to 
improved rates of sensitivity and specificity.  

For instance, Le-Petross & Shetty (2011) observed that most of the published studies have 
looked at breast screening MRIs performed with a 1.5 tesla magnetic system. In the United 
States, many private practices and academic centres routinely use magnetic systems with higher 
field strengths such as 3.0 tesla. It has been reported that 3-T, when compared to 1.5-T offers 
improved spatial resolution and temporal resolution for dynamic studies. It also results in a 3-
fold increase in cancer detection (Lourenco, Donegan, Khalil & Mainiero, 2014). Both authors 
hope that the introduction of these higher field magnetic systems will lead to improved rates of 
sensitivity and specificity, and a reduction in the rate of false-positives. 

Rahbar & Partridge (2016) and Heywang-Köbrunner et al. (2013) identified several functional 
MRI approaches at early stages of development that are showing promise for lesion 
differentiation and patient outcomes. Their usefulness as screening techniques is not clear.  
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Diffusion weighted imaging (DWI) is an MRI technique that provides information about the 
random motion of protons in tissues. Restricted diffusion of water molecules is observed in 
tissue with increased cellular density or increased fibrosis, which often occurs in malignant 
tumours. It is visualized as hyperintense signal on diffusion-weighted images or as low signal on 
calculated images of the apparent diffusion coefficients. Preliminary studies have shown higher 
AUC in benign lesions and normal breast tissues than most malignancies. Although sensitivity 
and specificity were only 84% and 79% respectively, this technique has potential value as a 
screening tool when consideration is given to the fast imaging acquisition time and lack of 
reliance on an injection of intravenous contrast (Porembka, Seiler & Sharma, 2016, Rahbar & 
Partridge, 2016, Partridge, Nissan, Rahbar, Kitsch & Sigmund, 2017, and Heywang-Köbrunner et 
al., 2013). Several challenges have been reported that currently prevent DWI from being 
implemented in a widespread breast cancer screening protocol, such as the lack of standard 
protocols for diffusion weighted image acquisition. While this technique has the greatest 
potential for future use, further investigation is warranted (Porembka et al., 2016, Partridge et 
al., 2017 and Rahbar & Partridge, 2016).  

Three studies have looked at improving the detection of DCIS (which is detected by 
microcalcifications on mammograms) as they saw its low detection rate as one of the main 
weaknesses of MRI screening compared to FFDM. They noted that most studies that investigated 
the use of MRI for DCIS detection were performed with high temporal resolution and relatively 
low spatial resolution. Badan et al. (2016) showed that MRI was able to detect the most 
prevalent morphologies and kinetic characteristics of DCIS. However, the study was not 
randomised (n = 25 patients with suspicious microcalcifications) so the usefulness of their 
findings is unclear. An earlier systematic review found that sensitivity of MRI in the assessment 
of DCIS reached 89.0%, compared to only 55.0% in mammography (Greenwood et al., 2013). It 
was felt that additional MR imaging tools, such as DWI and 3-T imaging, may help increase the 
specificity and sensitivity of MRI in the detection of DCIS (Greenwood et al., 2013 and Lehman, 
2010). Another field of future research includes sodium imaging as it produces different signals 
in malignant tumours (Rahbar & Partridge, 2016 and Heywang-Köbrunner et al., 2013).  

Improvements are also being made to the contrast agent used in MRI screening. One study 
compared the diagnostic performance of the standard MR contrast agent (gadopentetate 
dimegumine) with a new contrast agent (gadobenate dimegluine) that had higher relaxivity. 
They found that the new contrast agent had higher sensitivity and specificity (99.0% and 92.4%) 
than the standard contrast agent (93.0% and 83.8%).  

The use of computer-assisted mass classifier models to automatically analyse lesion features in 
MRI images to differentiate between normal and abnormal breast tissue has also been examined. 
Sathya & Geetha (2013) developed the artificial bee colony algorithm to optimise a neural 
network performing classifications on the regions of interest. The algorithm achieved sensitivity 
and specificity rates of 92% and 89% respectively. The experimental results demonstrated the 
usefulness of these systems, particularly for reducing the number of negative biopsies. Other 
studies have demonstrated the overall accuracy of computer-assisted detection (see Moftah et 
al., 2014 and Gubern-Merida et al., 2015).  
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7.4.3. What cost and safety findings have been reported? 

MRI is more costly than mammography and may also lead to larger numbers of false positive 
examinations and unnecessary biopsies which in turn contribute to increased medical 
expenditure (Berg et al., 2012). 

As part of their study on the cost-effectiveness of alternative strategies for integrating MRI into 
breast cancer screening for women at high risk, Ahern et al. (2014) compared the screening-
related costs between bilateral mammography and MRI and found that the latter was 
approximately five times more expensive. This figure compared favourably to earlier studies 
that found cost differences of three and four times (de Bock et al., 2013; Cott Chubiz et al., 2013 
and Saadatman et al., 2013). Kaniklidis (2015) noted that an MRI screening session in the United 
States costs anywhere between $277 and $965, which was still substantially more expensive 
than mammography which averaged $115 to $135.  

Seven studies have looked at ways to shorten the standard MRI screening protocol to save 
examination time and costs without reducing the rate of sensitivity and specificity. Fischer et al. 
(2012) noted that the maximum contrast enhancement in cancers occurred within the first three 
minutes after intravenous application, while normal parenchyma had a slow increasing uptake 
of the contrast material. This meant that the relevant time slot for the best differentiation 
between breast cancer and normal surrounding tissue was the first minutes after contrast 
injection. After this period, the wash-out seen in malignant tumours, as well as the increasing 
enhancement of normal parenchyma, made the depiction of breast cancer increasingly difficult. 
They developed a shortened MRI screening protocol for breast cancer detection.  

They found that if there was no ambiguous in-breast enhancement an examination could be 
completed within 4-5 minutes after contrast administration. In their study, three-quarters of 
women did not display ambiguous findings and were only examined using the shortened MRI 
protocol (the remainder were required to undergo further imaging, including T2 imaging). They 
concluded this approach would lead to a higher examination rate and reduction of the cost per 
MRI.  

Kuhl et al. (2014) developed their own abbreviated protocol (AP) for MRI screening, which 
achieved diagnostic accuracy and cancer yield equivalent to those of regular breast MRI 
protocols. It also was associated with reduced time for image acquisition (i.e., MRI system time) 
and image interpretation (i.e., radiologist reading time). In a study of 606 screening patients, 
they obtained an MRI acquisition time of 3 minutes and reading time of less than 30 seconds, 
while achieving a sensitivity and specificity of 90.9% and 94.3%, which were not significantly 
different than the full diagnostic protocol (FDP). They predicted the AP had the potential to 
identify 18.2 additional cancers per 1,000 screening examinations. Gilbert & Selamoglu (2017) 
praised the use of the abbreviated breast MRI protocol noting that it was less expensive and 
more feasible in terms of machine time. However, they acknowledged that it would not be cost-
effective for women who were only at immediate risk of developing breast cancer. 

Chhor & Mercado (2017) identified several other studies that had investigated the use of an 
abbreviated breast MRI protocol for screening purposes (see table 1). The AP resulted in shorter 
acquisition time compared with that for FDP. Among the three studies reviewed, the average 
time to perform breast MRI with FDP was approximately 25:01 minutes. The average time to 
perform a study with AP was 11:08 minutes, with an average time savings of approximately 
13:53 minutes. In the Grim Harvey and Moschetta studies, the average time to interpret images 
with AP was 3-4 times faster than with FDP. However, the Grimm study reported no difference 
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in interpretation time. Chhor & Mercado offered two explanations for this result: (i) the 
additional sequences for FDP were not useful for clinical interpretation, so the readers spent less 
time reviewing the images and (ii) readers spent more time reviewing the AP images because 
they did not have available the images obtained with the additional standard sequences. 
Nonetheless, in their view these studies showed that comparable screening results can be 
achieved with abbreviated MRI protocols and conventional full diagnostic protocols.  
MRI Table 1: Results from studies investigating use of abbreviated breast MRI protocol 

Results Grimm et al. (2015) Harvey et al. (2016) Moschetta et al. (2016) 

FDP acquisition time (min) 20:00 23:20 16:00 

AP acquisition time (min) 11:13 4:40 10:00 

FDP average interpretation 
time(s) 

177 385.8 360 

AP average interpretation 
time(s) 

178.8 93 120 

FDP Number of cancers 12 7 69 

AP Number of cancers 11 7 67 

FDP sensitivity 95 - 92 

AP sensitivity 86, 89 - 89 

FDP specificity 52 - 92 

AP specificity 52, 45 - 91 

Jain, Jain, Hyzy, & Werth (2017) explored whether the AP also had an impact on recall rates. 
Using the AP to read 591 scans, they found that the recall rates for AP (6.6%) and FDP (5.8%) 
were not statistically significant (p = 0.63). They concluded that AP had the potential to replace 
FDP in the screening setting so long as there is the ability to recall patients with any abnormality 
for further evaluation.  

In terms of safety, MRI has been found to be a safe imaging method that did not involve ionising 
radiation (Sutcliffe & Otto, 2013). The contrasting agent used in the technique is less likely to 
produce an allergic reaction that may occur when iodine-based substances are used for other 
imaging modalities. However, not all patients can tolerate a contrast agent and it may pose a risk 
for women with kidney disease. There is a small chance that a patient may develop a skin 
infection at the site of injection (Mehnati & Tirtash, 2015). In their study of women’s experiences 
with breast cancer screening, Brandzel et al. (2017) also observed that a few women had 
experienced adverse reactions to the contrast agent used in the procedure. 

While MRI screening is not painful, the patient must lie still in an enclosed machine, which may 
be a problem for claustrophobic patients. This position can be difficult to keep for some patients 
with neck problems, obesity or breathing issues (Mehnati & Tirtash, 2015). Also, MRI cannot be 
performed in women who have certain metallic implants (such as pacemakers) as these may be 
affected by the strong magnet of the MRI. Pregnant women are not encouraged to undergo MRI 
(Mehnati & Tirtash, 2015).  
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There are also growing health concerns related to the long-term use of gadolinium contrast 
agents used in MRI screening. Researchers have noticed an accumulation of residual gadolinium 
in the brain of patients who have undergone multiple contrast-enhanced MRI studies. While the 
clinical significance of this observation is unclear, there is a need for caution (Kanal & Tweedle, 
2015) 

7.4.4. Does this technology reduce deaths due to breast cancer through early detection? 

Three systematic reviews have reported on MRI and the rate of the mortality. Morrow et al. 
(2011) identified no prospective randomised trials of breast cancer screening in general or high-
risk populations using MRI with survival as an endpoint. Their review supported other studies 
that found the sensitivity of MRI was better than that of mammography for the detection of 
invasive cancers and the occurrence of fewer interval cancers. Nonetheless, they were careful 
not to claim that MRI screening had a greater survival advantage. As noted elsewhere, MRI was 
better at detecting breast cancer in women who carry BRCA mutations. However, the cancers 
that occur in BRCA1 mutation carriers commonly have a prognostic phenotype, lacking 
oestrogen and progesterone receptors, so the effect of early detection on survival was unclear.  

Heller & Moy (2016) agreed that there was little data on the impact of MRI screening on 
mortality in other high-risk groups or moderate-risk groups. However they referenced a Evans 
et al. (2014) study that evaluated 5- and 10-year survival of high-risk women by comparing MRI 
and mammographic surveillance groups to mammography only or no enhanced surveillance 
groups. While there was no difference in 10-year survival between the MRI and mammography 
and mammography-only groups, survival was significantly higher in the MRI-screened group 
(95.3 %) compared to no intensive screening (73.7 %). The authors concluded that there 
appears to be benefit from screening with MRI, particularly in BRCA2 carriers.  

Santoro, Podo & Sardanelli (2014) also commented on the Evans trial, noting that the higher 
survival rate among women screened with MRI could certainly be due to the earlier stage of 
MRI-detected breast cancers but could also arise from more up-to-date therapies applied to 
BRCA mutation carriers diagnosed with cancer. In a later observational study, Evans et al. (2016) 
evaluated BRCA2 mutation carriers with mammography alone (53 women), MRI and 
mammography (34 women), or no intensive screening at all prior to cancer development (274 
women). Ten-year survival was 85.5 % in the mammography group, 100 % in the MRI and 
mammography group, and 74.6 % in the control group.  

Three other observational studies have been identified. Møller et al. (2013) reported on the 5- 
and 10-year survival rate of BRCA1 mutation carriers. As part of a Norwegian screening 
program, 802 women with a BRCA1 mutation were examined annually with MRI in addition to 
mammography and followed for a mean of 4.2 years. As of December 2011, 68 of 802 women in 
the screening program were diagnosed with DCIS or invasive breast cancer (8.5 %). Sixty-three 
of the cancers were invasive and five were in situ. Ten of the 68 patients died of cancer in the 
follow-up period. The 5-year breast cancer-specific survival for women with cancer was 75% 
and the 10-year survival was 69%. Since these rates were less than anticipated, the authors 
considered that the benefit of annual MRI surveillance on reducing breast cancer mortality in 
BRCA1 mutation carriers had yet to be proven.  

In the Passaperuma et al. (2012) study, which had an eight-year follow-up, there was only one 
death out of the 54 BRCA mutation carriers diagnosed with breast cancer. This equated to a 0.5% 
mortality rate. An earlier Dutch MRI screening trial found that four of the 42 BRCA mutation 
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carriers diagnosed with invasive breast cancer died of the disease, and one developed metastatic 
disease. The study reported an 84.0% distant free-survival at six years and an annual mortality 
rate at 1.2%  (Rijnsburger et al., 2010). 

In their systematic review, Wellings, Vassiliades, & Abdalla (2016) claimed that if MRI could 
detect cancers at an earlier stage, it could be inferred that there would be an equivalent decrease 
in mortality. However, they acknowledged that support in terms of decreased mortality would 
need to come from recurrence and survival data from more observational studies.  

7.4.5. Does this innovation show higher sensitivity and specificity for women with dense 
breast and women who have breast surgery/augmentation compared to single 
human view? 

Increased mammographic density is known as an independent risk factor for breast cancer. 
Heller & Moy (2016) cited various studies demonstrating MRI’s increased sensitivity compared 
to mammography in subsets of women with dense breasts. This was also observed by Runge 
(2013), who considered that this population should be considered for routine evaluation.  

In their systematic study of supplementary breast screening techniques, Melnikow et al. (2016) 
referred to three studies that found the sensitivity of MRI screening on women with dense 
breasts ranging from 75.0% to 100.0%. Specificity also varied, ranging from 78.0% to 93.0%. It 
should be noted that it was not clear whether the papers referred to in this study examined 
women who had no apparent risk factors other than having dense breasts.  

One retrospective study by Berg WA et al. (2012) comprised 612 participants with 
heterogeneously or extremely dense breasts who had at least one other risk factor (such as a 
familiar risk). All the participants had been previously screened as part of an annual 
mammography screening program. The study reported a sensitivity of 31.3% for mammography 
alone, which increased to 100% by adding MRI imaging, and yielded 14.7 additional 
cancers/1000 screening exams. However, the increase in sensitivity was accompanied by a 
reduction in specificity for mammography (92.1%) and for MRI (70.6%), which resulted in 
higher false positives and a recall rate of 20%. 

O’Flynn, Ledger, & de Souza (2015) raised concerns about the lack of papers that compared 
performance of different screening modalities in women with dense breasts but with no other 
risk factors. The cancer yield in women in the general population with dense breasts who are 
otherwise at low or intermediate risk will not be as high as that in high-risk women: therefore, 
the costs and time required to scan and interpret large number of images would be high for a 
small cancer detection. While they acknowledged the potential of MRI to increase screening 
sensitivity in women with dense breasts, they said there was very little clinical evidence 
justifying its use in this population cohort.  

One study has looked at whether a different screening technique could be employed to improve 
the detection of breast cancer in asymptomatic women with dense breasts. McDonald et al. 
(2016) evaluated the performance of incorporating DWI into MRI screening to detect 
mammographically occult breast cancer (invasive carcinoma and DCIS) in high-risk women with 
dense breasts. They observed that mammographically occult breast cancers exhibited higher 
signal intensity on DWI than normal screening methods. They found sensitivity and specificity 
rates of 45% and 91% respectively. While sensitivity was lower than expected they attributed 
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this to the study design employed. They concluded that DWI had potential as a rapid 
supplemental screening tool.  

Only one paper discussed women who have had breast surgery/augmentation. The paper noted 
that despite the imaging challenges posed by patients with breast implants, MRI could delineate 
cancer obscured by the implant. MRI was also the method of choice in the evaluation of the 
augmented breast and detection of problems over time, with very high accuracy in spotting 
implant rupture and in cancer detection (Salem, Kamal, Mansour, Salah, & Wessam, 2013). 

7.4.6. Is there evidence that this innovation is more acceptable to women compared to 
digital mammography? 

Three studies discussed the experience and acceptability of MRI in women who underwent 
breast screening. 

Brandzel et al. (2017) conducted six focus groups attended by 41 women (aged 38-75 years) 
who had undergone MRI screening as part of their breast cancer treatment. Many women 
experienced discomfort during the procedure, because of the position they had to hold or 
claustrophobia, and anxiety related to the examination, primarily because they feared 
subsequent cancer detection. 

In their study of 320 high-risk patients who underwent 757 screening procedures over time, 
Pederson et al. (2015) also observed that the patients often experienced significant anxiety 
when called back for additional studies or biopsy procedures. However, MRI screening seemed 
to be acceptable by most of their test subjects as evidenced by the high rates of participation in 
recommended screening. They noted that withdrawal from MRI screening programs because of 
claustrophobia or stress was rare, and that women at elevated risk accepted the need for 
additional tests, including those that resulted in negative findings, as part of intensified 
surveillance. 

In an earlier study, Brédart et al. (2012) invited 1561 women to complete a questionnaire within 
2 days after breast screening (compliance >91%). Of these women, 329 underwent MRI 
screening. These women reported significant MRI discomfort related to duration (35%), 
immobility (38%), prone position (21%), noise (65%) and panic feelings (6%). They reported 
that MRI was associated with a more favourable examination psychological experience than 
mammography (p≤.001), especially in women younger than 50. This finding allowed them to 
conclude that perception of care and experience with MRI was more positive than with standard 
imaging procedures.   

7.4.7. Has the technology been implemented into a national screening program?  If so, 
what outcomes have been achieved?  What implementation issues arose? 

We have not identified any evidence that MRI has been incorporated into a national screening 
program, however, it is being used as part of the Ontario Breast Screening Program in Canada. 
The program is a province-wide, organised, publicly funded screening program for breast 
cancer. Average-risk women between the ages of 50 and 74 years are offered screening with 
mammography every two years, whereas women at higher than average (but not high) risk are 
offered screening with mammography annually. Screening with both mammography and MRI is 
currently indicated for women aged 30 to 69 years at high risk for breast cancer (Chiarelli et al., 
2014). 
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7.4.8. Has a national position statement been published about the technology, and if so, 
what is the position?  Is there consensus in position statements? 

In 2007, the American Cancer Society recommended MRI screening in addition to 
mammography for women at high (20–25% or greater) lifetime risk of developing breast cancer, 
individuals with a known BRCA1 or BRCA2 mutation, or those with a first-degree relative with a 
BRCA mutation. MRI screening is also recommended for women with a clinical history of 
radiation to the chest between age 10 and 30 and those with specific genetic mutations known 
to increase the risk of breast cancer such as Li-Fraumeni syndrome (TP53 gene mutations) and 
Cowden and Bannayan-Riley Ruvalcaba syndromes (PTEN gene mutations), or their first degree 
relatives (see Heller & Moy, 2016 and Mainiero et al., 2016). 

In 2010, the European Society of Breast Cancer Specialists (EUSOMA) published a paper 
evaluating the available evidence regarding clinical value of and indications for breast MRI. This 
paper reported the results of all the cohort studies investigating the diagnostic performance of 
different imaging modalities in the surveillance of high-risk women. They recommended that 
women with a family history suggesting an inherited predisposition to breast cancer should 
have their risk assessed by an appropriately trained professional group (eg, genetic counselling). 
If found to be at high risk (20-30% lifetime risk or greater), these women should be given oral 
and written information regarding their risk and the risks and benefits of mammography and 
MRI screening or alternative risk-reducing interventions. If these women accept to be screened 
by MRI, they should be informed about screening intervals and logistics. This should be 
determined based on regional or national considerations reflecting an area-specific cumulative 
risk in the general population, resource availability and practical feasibility. They recommended 
that annual MRI screening should be available starting at age 30 (Salem et al., 2013; Sardanelli et 
al., 2010).  
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8. MICROWAVE IMAGING 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The Bulletin on new and emerging technologies for breast cancer detection published in 2009 
advised that microwave imaging may not be of clinical value within a five-year timeframe (from 
the date of publication). Radar-based microwave imaging was discussed as being in early stages 
of development, with patient studies planned for 2009 (National Horizon Scanning Unit, 2009). 

8.1. How does microwave imaging work as a breast imaging tool? 

Microwave imaging (MI) as a tool for the early detection of breast cancer in asymptomatic 
women is based on the contrast of electrical properties in the microwave spectrum of healthy 
tissue and malignant tumours in the breast. Microwave energy propagation, reflection and 
attenuation is sensitive to water, and due to the different dielectrical properties of normal breast 
tissue and tumours (i.e., cancer lesions contain more water than healthy tissue), microwave 
images show contrasts and allow for detection of abnormalities in the breast (Modiri, Goudreau, 
Rahimi, & Kiasaleh, 2017). Initial experiments found significant differences in the dielectric 
properties of normal breast tissue and tumours, whereas large scale experiments found that the 
differences were much smaller but still detectable (Kwon & Lee, 2016). 

MI systems transmit microwave signals into the breast, and then measure the scattered signals 
reflected from the breast tissue (including tumours, if present) through reconstruction of the 
breast in an image. While the resolution becomes higher as the MI frequency increases, loss of 
penetration subsequently increases, making obtaining a clear image difficult. To account for this, 
a limit of upper frequency of the band is needed for appropriate penetration into the breast 
tissue – an ultra-wideband signal works in this manner (Kwon & Lee, 2016). Since the 
penetration loss of healthy fat tissue is less than 4dB/cm with microwave signal (centred at 
6GHz), it is possible for low power signals to reach antenna on the other side of the breast.  

In order to reduce false positives in MI of the breast, it is important to account for spatial and 
temporal changes in breast tissue, that is, biological variations due to hormonal changes or 
weight gain/loss, and inconsistencies in patient positioning or system noise (Modiri et al., 2017). 

Wang (2017) details MI approaches that can be grouped as ‘passive’ and ‘active’. ‘Passive’ MI 
uses radiometry to measure the temperature differences between normal and malignant tissues 
– but is not further discussed in the review, presumably because passive MI is not as advanced 
as active MI techniques but this is unclear (Wang, 2017). Microwave tomography14 and radar-
based microwave imaging are ‘active’ approaches that both use the scattering of microwave 
signals. The application of microwave tomography and radar-based microwave imaging as they 
relate to breast cancer screening are further described below. 

Microwave tomography 

With microwave tomography, an inverse scattering method is used to obtain an image through 
creating a complete map of the electrical properties of the breast tissue. The inverse scattering 
method uses scattering signals including diffraction from objects, and in doing so creates a map 
                                                             

14 Note: other forms of tomography are discussed in a separate section of this Horizon scan. 
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of permittivity and conductivity (Kwon & Lee, 2016; Modiri et al., 2017). The calculation 
required for the inverse method to obtain the breast image can take a lot of time (a total image 
acquisition time of 10 to 15 minutes and an image processing time of more than 10 hours) 
(Kwon & Lee, 2016). MI also requires an (undisclosed) heavy computational load (Wang, 2017). 

Recent techniques to improve the accuracy and specificity of microwave tomography include 
using magnetic nanoparticles as a contrast agent, with compressive sensing techniques to show 
the magnetic contrast within the breast (Wang, 2017). Summarising results from other studies, 
Wang et al. noted that microwave tomography demonstrated that similar quality breast images 
can be obtained via a compressive sensing-based microwave tomography with 12 sensors, and 
via microwave tomography with 70 sensors. The compressive sensing-based system 
significantly reduced operation cost and data collection time; however, the authors did not 
further describe this (Wang, 2017).  

Radar-based microwave imaging 

Radar-based MI is a technique that specifies the location of one or multiple strongly scattering 
objects (tumours) within tissue (of the breast) (Modiri et al., 2017) through reconstructing the 
image using the reflected wave (Kwon & Lee, 2016). Wang describes five classifications for 
radar-based MI, including confocal microwave imaging (CMI), tissue sensing adaptive radar 
(TSAR), microwave imaging via space time (MIST), multi-static adaptive (MSA) MI, and 
holographic microwave imaging (HMI) (Wang, 2017). MI Table 1 (below) compares some of 
these techniques from prototype/experimental stages. 
MI Table 1: Radar based microwave imaging techniques (Wang, 2017) 

Technique Ability to 
detect 

Benefits Limitations Author 

2D CMI 2mm 
tumours 

Ability to generate high resolution 
images 

Limited ability to 
discriminate against 
artefacts and noise 

Hagness 
et al. 
(1999) 

3D CMI 6mm 
tumours 

Ability to generate high resolution 
images 

Limited ability to 
discriminate against 
artefacts and noise 

Hagness 
et al. 
(1999) 

TSAR 4mm 
lesions 

Can detect and localise lesions Large reflections by 
skin, expensive 
electronics for real-
time imaging 

Fear et al. 
(2003) 

MIST 4mm 
tumours 

Significant performance due to ultra-
wideband 

Caused skin-breast 
artefacts in the images 

Bond et 
al. (2003) 

Near-field 
indirect HMI 

Not 
reported 

Real-time images at lower cost More validation 
required on 
theory/proof of 
concept 

Smith et 
al. (2014) 

Far-field HMI Not 
reported 

No matching medium required, 
complex permittivity of object not 
required to calculate to generate an 
image – reduced imaging 

Not discussed Wang et 
al. (2014) 
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Technique Ability to 
detect 

Benefits Limitations Author 

construction time. 

Radar-based MI can also be done through frequency domain analysis. Kwon and Lee noted that 
there were several frequency domain measurement systems reported in the literature; however, 
this approach required costly equipment (eg, a vector network analyser (VNA)) and took a 
significant amount of time, which was a barrier to clinical use as patient movement could create 
artefacts in the imaging process (Kwon & Lee, 2016). Time domain measurement was another 
radar-based MI approach for breast imagining discussed by Kwon and Lee, though the only 
apparent clinical study has only been used for breast health monitoring with 13 healthy 
volunteers (Kwon & Lee, 2016). Barriers to using this approach were noted, including 
dependence on a high-precision pulse generator and a very high-speed oscilloscope which may 
require complicated switching circuits, as well as requiring a very fast sampling clock whereby a 
“small jitter” may blur resulting images (Kwon & Lee, 2016). 

8.2. Summary of key findings 

• The use of microwave imaging in breast cancer screening of asymptomatic women is 
still in the early stages. Much of the research focus is on identifying feasible 
microwave imaging systems that demonstrate sufficient sensitivity and detectability 
to support their use in further clinical testing. Research is most advanced in the use of 
ultrawideband frequency systems. 

• There is currently no indication of the timeframe in which the full clinical potential of 
microwave imaging for breast cancer detection will be realised. Preliminary results 
from clinical studies indicates that this technology has the potential for clinical use. 

• Current research is not able to identify whether microwave imaging as a breast 
imaging tool is able to reduce deaths due to breast cancer through early detection. 

• Microwave imaging has not been incorporated into any national breast screening 
programs, nor are there any national position statements that have been released on 
their use in breast cancer screening for asymptomatic women. 

8.3. Literature search results (number of studies returned) 

Sixty-five studies relating to microwave imaging of the breast were returned from the literature 
search. Most of the studies were experimental, based on testing components of MI systems or 
testing system prototypes for imaging the breast. Most involved testing on non-humans (eg, 
breast phantoms). These studies were excluded after PICOT criteria were applied. We included 
two systematic reviews. A further review and one article were identified in a grey literature 
search. 

Systematic and/or literature reviews 

Three reviews: Kwon & Lee, 2016; Modiri et al., 2017; Wang, 2017 
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RCTs 

None identified. 

Prospective studies 

None identified. 

Retrospective studies 

None identified. 

Grey literature 

One news article: “Microwave breast screening getting closer,” 2017. 

8.4. Study findings and discussion 

8.4.1. What stage of development or trial is this innovation at? 

There is no evidence to suggest that MI is at a stage where it could be effectively applied as a 
breast screening method. Three systematic reviews have discussed studies where clinical trials 
have taken place with symptomatic patient populations, but these studies noted that MI for 
breast cancer screening (asymptomatic or symptomatic) is at an early stage of development. 

Systematic and/or literature reviews 

MI technology has been developing over the last 30 years (Modiri et al., 2017). It is considered to 
be a promising new method for early-stage breast cancer detection as it may be able to detect 
small-sized tumours in the breast (Kwon & Lee, 2016). Clinical trial results have demonstrated 
that tumours with a size of 1cm diameter could be detected, which show’s MI’s potential as “an 
alternative or additional tool to mammography for diagnosing breast cancer” (Wang, 2017). 
Wang describes ‘active’ MI (microwave tomography and radar-based microwave imaging) as 
emerging mammography techniques for diagnosis (Wang, 2017). Furthermore, it is inferred that 
MI can obtain images quickly compared to other breast imaging methods (Kwon & Lee, 2016). 
However, the technology has not advanced to the point where a population-based RCT has been 
conducted for any MI technique with a breast screening application. 

MI Table 2 (overleaf), from Modiri and colleague’s 2017 systematic review, shows a summary of 
clinical MI breast imaging studies since 2013. Modiri et al. also summarised six phantom-based 
MI studies since 2013 (Modiri et al., 2017). Results are discussed in the following section. 
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MI Table 2:  Summary of clinical MI studies since 2013 (Modiri et al., 2017, p.453) 

Research group Number of 
patients 

Technique 

Fear et al. (2013) University of 
Calgary, AB, Canada  

8 patients 0.05 – 15 GHz Microwave imaging based on 
tissue-sensing adaptive radar 

Meaney et al. (2013) Dartmouth 
College, NH 

8 patients 0.7 – 1.7 GHz in 200 MHz increments Microwave 
tomography 

Porter et al. (2016) McGill 
University, QC, Canada 

13 patients 2 – 4 GHz Time-domain microwave imaging 

Preece et al. (2016) Bristol 
University, Bristol, UK 

86 patients 3 – 8 GHz Ultrawideband radar 

As seen in MI Table 2 (above), the most comprehensive recent clinical study by Preece et al., had 
86 enrolled patients. The patients were recruited from a breast care clinic for symptomatic 
women, and mainly had cysts and cancers, and rarely had hematoma, lipoma, or fibradenoma. 
They were scanned with a prototype MI design (MARIA M4), and the resulting images were 
compared blindly with ultrasound and mammography in terms of detection rate. The findings 
reported sensitivity rates from MI that were comparable to digital mammography for the total 
sample (74% compared with 77%, respectively), but which outperformed digital mammography 
in dense breast tissue (86% for MI compared with 69% for FFDM; Modiri et al., 2017). 

While there are promising findings from early clinical studies of MI of the breast, it is noted that 
it is not at a clinical trial stage yet, as most of the research available has utilised breast phantoms 
(materially constructed with fatty and cancerous tissue or numerical), that suitable frequency 
ranges are not confirmed, and spatial resolution of microwave images of the breast are 
inadequate (Wang, 2017). Many challenges need to be addressed before MI can be implemented 
in clinical trials, such as improving algorithms for imaging, and implementation of hardware that 
is highly sensitive, compact, and cost effective with enough sensors and senor arrays to gain high 
resolution images. Furthermore, a highly dynamic system needs to be developed to capture the 
small differences in the scattered field or contrast agents to enhance malignant tissue (Wang, 
2017). Additionally, (Modiri et al., (2017) stated that results from MI studies need to be reported 
in relation to current breast imaging standards, (eg, tumour size, location, metastasis extension) 
and MI slices need to be correlatable to other imaging modalities for accurate comparison). 

A University of Waikato Professor of Engineering, Yifan Chen, is leading a large-scale clinical trial 
of MI as a breast screening tool in China, in partnership with ET Medical, a leading medical 
instrument company headquartered in Shenzhen, China. Recent reports about the trial include 
that:  

“In the first stage of the trial, the system has been deployed to examine 11 
healthy women with six of them having mammary hyperplasia. These 
preliminary tests confirm the system’s effectiveness and suggest that 
responses from mammary hyperplasia can be identified successfully”.  

The trial began in December 2016, and the results were due to be reported in the Final Working 
Group and Management Committee Meeting of the EU Framework Programme Horizon 2020 
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COST Action TD1301 "MiMed" in Malta in June 2017 (“Microwave breast screening getting 
closer,” 2017). 

8.4.2. Does this innovation show high sensitivity and specificity for women with dense 
breasts and women who have had breast surgery/augmentation compared to 
digital mammography? 

MI has showed some promise for better detection of breast cancer for women with dense 
breasts compared with digital mammography, but more research is needed to confirm these 
findings. In a clinical trial of 86 symptomatic patients, Preece et al. (2016) observed that one MI 
technique may have significant potential for detecting breast cancer for patients with dense 
breasts as it outperformed digital mammography in this group (Modiri et al., 2017). Kwon & Lee, 
(2016) stated that MIST methods have suffered from performance degradation when used for 
investigating dense breasts, however, development of a CMOS chip-based time-domain 
measurement microwave system shows promise as an imaging method for younger women with 
dense breasts. 

Because Professor Yifan Chen’s MI system study would include a large group of Asian women 
“…who usually have denser breasts than European women which makes it harder to detect 
tumours using X-ray or ultrasound” the study’s findings would provide useful insight on 
sensitivity and specificity for women with dense breasts (“Microwave breast screening getting 
closer,” 2017).  

8.4.3. What is its considered potential clinical value in five years? In 10 years? 

It is unclear from the literature reviewed for MI what the potential clinical value of any of the 
discussed techniques may have in the next five to 10 years. The articles reviewed all regarded MI 
of the breast as having potential as a breast cancer detection or diagnosis tool but did not specify 
within what period this might be realised.  

Professor Yifan Chen hoped that commercialisation of MI breast screening technology could 
begin in the next one to two years (“Microwave breast screening getting closer,” 2017).  

8.4.4. What cost and safety findings have been reported? 

Systematic and/or literature reviews 

MI systems utilise nonionizing radiation which is seen as safer than radiation exposure in digital 
mammography. There have been concerns about the use of ultrawideband frequency, but this 
has been assessed as safe up to 15 GHz in one study, as absorbed tissue in their MI setup was 
below prescribed standard limits (Modiri et al., 2017). Kwon and Lee (2016)discuss the 
utilisation of a specific absorption rate (SAR) for setting safety standards for the maximum 
allowed exposure to power to be absorbed in tissue per volume. Standard C95.1-1999 states that 
in the case of devices operating at 100 kHz to 6 GHz, exposure should not exceed a maximum of 
1.6 W/kg for an average of 1g of human tissue. Compared to a mobile phone using the same 
frequency band, microwave breast cancer imaging should not be hazardous to a patient’s health, 
because there is less exposure than a mobile phone.  

With regards to cost, all included reviews described MI equipment/systems as inexpensive 
(Kwon & Lee, 2016; Modiri et al., 2017; Wang, 2017); however, there was little discussion of 
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evidence to support this. Wang suggested that as MI systems become more complex (eg, 
including the use of more sensors) and the use of coupling medium, costs can increase 
significantly (Wang, 2017). Kwon & Lee (2016) argued that a specific MI system (CMOS chip-
based time-domain measurement microwave system) could be implemented at a lower price 
because it did not require a VNA, oscilloscope, or a pulse generator which could cost between 
$10,000 and $100,000 – a transceiver chip costs approximately $100, so this imaging system 
prototype could cost less than $3,000.  

8.4.5. Is there evidence that this innovation is more acceptable to women (in general 
and by ethnic group) compared to digital mammography? 

Studies have inferred that MI techniques may be more acceptable to patients undergoing 
screening as they generally do not require breast compression, as in digital mammography. Two 
reviews mentioned that an advantage of MI techniques was that breast tissue compression, 
which can cause discomfort for patients, is generally not required for MI (Kwon & Lee, 2016; 
Modiri et al., 2017). No commentary has been made around acceptability based on ethnicity or 
age of patients. 

8.4.6. Does this technology reduce deaths due to breast cancer through early detection? 

Based on this review, there is no evidence to suggest that MI reduces deaths due to breast cancer 
through early detection. 

8.4.7. Has this innovation been implemented into a national screening program? If so, 
what outcomes have been achieved? What implementation issues arose? 

MI techniques have not been implemented into any national screening programs for breast 
cancer. 

8.4.8. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there a consensus in position statements? 

No national position statements have been published about MI as a breast cancer screening tool. 
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9. MOLECULAR BREAST IMAGING  

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

Safety: No adverse effects associated with the use of molecular breast imaging (MBI) were 
identified; however, MBI is an invasive screening modality and not suitable for pregnant women 
due to the use of radiopharmaceuticals. The 2009 report concluded that the trade-off in cancer 
detection versus invasiveness of the MBI procedure would need to be considered before 
incorporating MBI into general population screening. 

Effectiveness: Overall, the literature generally suggested that MBI can detect tumours with 
sensitivity and specificity equal to or better than mammography, although levels of specificity 
and sensitivity varied across studies. There was indication from one study that dual-head MBI 
systems may perform better than single-head systems. 

Cost: Fees for MBI tests ranged from $286.80 to $834.90. 

9.1. Molecular breast imaging as a breast cancer screening modality 

Molecular breast imaging (MBI), also known as breast-specific gamma imaging (BSGI) or breast 
scintigraphy, is a functional imaging technique that uses a breast-specific gamma camera to 
create high resolution images with a small field-of-view. The literature is inconsistent in its use 
of the terms MBI and BSGI, sometimes using them interchangeably and sometimes using BSGI to 
refer to camera systems using a single-head detector and MBI for those using a dual-head 
detector. Because of its improved ability to detect smaller lesions, dual-head systems are 
generally now used for clinical MBI (Berg, 2016). For this reason, we use the term ‘MBI’ 
throughout, and will specify where results relate to single-head detectors (where this 
information is available). 

The MBI technique represents an improvement on an earlier nuclear imaging technique called 
scintimammography, which used a traditional gamma camera rather than a breast-specific 
gamma camera and therefore had difficulty identifying cancers smaller than 1cm in diameter 
(Holbrook & Newel, 2015). These improvements in imaging equipment have led to higher 
resolution images and decreases in radiation dosage, introducing the possibility for MBI to be 
used in breast cancer screening programs (Adrada, Moseley, & Rauch, 2016). 

Like positron emission tomography (PET), MBI uses the interaction between biological cells and 
administered chemical tracers (in this case the radiopharmaceuticals 99mTc sestamibi or 99mTc 
tetrofosmin) to detect cancerous tissue. In cancerous tissue, both delivery and uptake of the 
radiotracers are higher compared with surrounding healthy tissue. This means that the 
sensitivity of MBI is not affected by the density of breast tissue, scars from prior surgery, or 
implants (Sun, Wei, Yang, & Liu, 2013). That said, concerns with levels of radiation dosage 
compared to mammography are the primary barrier for incorporating MBI into routine 
screening programs (Hruska & O’Connor, 2013); however, some clinics in the USA are offering 
supplemental MBI to women with dense breast tissue who do not qualify for, or do not want, 
MRI (Hruska, 2017). 

To conduct an MBI test, the breast is minimally compressed from both top to bottom (CC 
position) and side to side (MLO position) to limit movement, with the gamma camera placed in 
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direct contact with the surface of the breast. The radiotracer is then injected intravenously and 
imaging is performed within 5 minutes after injection (Adrada et al., 2016). Two images of 10 
minutes duration are taken of each breast (one in each compression position), meaning the 
entire examination lasts approximately 40 to 45 minutes (Adrada et al., 2016). 

The role of MBI in the early detection of breast cancer has not expanded at a fast rate, in part 
because of historical problems with image resolution, high levels of radiation dosage, and lack of 
an evidence base on its use in an asymptomatic population (Wahl, 2016). Current 
recommendations from the American College of Radiology do not support the use of MBI in 
routine screening, partially due to these limitations (Holbrook & Newel, 2015). However, recent 
advances in MBI technology are re-awakening interest in MBI as a screening modality for 
asymptomatic women, particularly those with more dense breasts (BIRADS 3 or 4). These 
advancements and their impact on MBI effectiveness are outlined below. 

9.2. Literature search results (number of studies returned) 

From the literature search, a total of 52 articles related to innovations in MBI were identified. 
Abstract contents were then reviewed and 35 of these articles were excluded for various 
reasons, including: use of non-human, high-risk or asymptomatic samples; a focus on diagnosis 
or treatment; or a focus on general cancer detection rather than specifically breast cancer. 
Sources that were not peer-reviewed, such as theses and dissertations, were also excluded. 
Three further articles were excluded because the full-text article could not be accessed (McPeak, 
2014; Shermis, Redfern, Burns, & Kudrolli, 2017; Zardavas et al., 2017). Articles included in 
identified literature reviews were not separately reviewed for the current scan. 

A total of 13 articles were then reviewed to answer the key research questions in relation to 
innovations in MBI for breast cancer screening in asymptomatic women.  

Systematic and/or literature reviews 

Twelve literature reviews: (Adrada et al., 2016; Berg, 2016; Even-Sapir, Golan, Menes, 
Weinstein, & Lerman, 2016; Ho, Jafferjee, Covarrubias, Ghesani, & Handler, 2014; 
Holbrook & Newel, 2015; Hruska, 2017; Hruska & O’Connor, 2013; Surti, 2013; Tafreshi, 
Kumar, Morse, & Gatenby, 2010; Wahl, 2016; Weigert & Kieper, 2012; Yang, 2011). 

RCTs 

 None identified 

Prospective studies 

 One study: (Hruska et al., 2015) 

Retrospective studies 

 None identified outside of those included in identified literature reviews. 

Grey literature 

 None identified 
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9.3. Summary of key findings  

• Results from largely retrospective studies are promising regarding the effectiveness of 
MBI for screening purposes; however, more large-scale multi-centre prospective 
studies are required before conclusions can be drawn about the role of MBI in the early 
detection of breast cancer in asymptomatic women. 

• There is currently no indication of the timeframe in which the full clinical potential of 
MBI for breast cancer detection will be realised. High sensitivity and moderate 
specificity rates have been found in existing research, with improvements in the 
detection of sub-centimetre lesions. Rates of cancer detection are improved when MBI 
is used as a supplement to screening mammography. 

• Despite initial issues with radiation dosage, more recent MBI systems are 
demonstrating good detection ability with reduced effective radiation dosages 
(approximately 2.4 mSv). One study found that the cost of supplementing screening 
with MBI is higher per examination than for mammography alone, however combining 
MBI with mammography leads to a decrease in cost per cancer detected. 

• There is growing evidence for the increased efficacy of MBI for the early detection of 
cancer for women with dense breasts (BIRADS 3 or 4) compared with screening 
mammography, although these results may underestimate the impact of MBI for 
women with more dense breasts due to categorisation issues. 

• No specific information on the acceptability of MBI to women was identified; however, 
the average length of time for an MBI examination (40-45 minutes) is substantially 
longer than the length of time needed for a mammogram. 

• MBI has not been incorporated into any national screening programs, nor are there any 
national position statements that have been released on its use in breast cancer 
screening for asymptomatic women. 

• Current research is not sufficient to be able to identify whether MBI is able to reduce 
deaths due to breast cancer through early detection. 

9.4. Study findings and discussion 

9.4.1. What stage of development or trial is this innovation at? 

Although earlier literature raised a number of concerns that prevented the adoption of MBI into 
routine screening programs, more recent research is promising in terms of advancements in 
MBI effectiveness and safety; however, more large-scale multi-centre prospective studies are 
required before conclusions can be drawn about the role of MBI in the early detection of breast 
cancer in asymptomatic women (Hruska, 2017). A large focus of current research is on reducing 
the effective radiation dosage of MBI whilst retaining sufficient image quality to ensure high 
rates of sensitivity and specificity for the early detection of cancer in asymptomatic women. 
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9.4.2. What is its considered potential clinical value in five years? In 10 years? 

Systematic and/or literature reviews 

No specific timeframes are mentioned in the literature regarding the clinical potential of MBI; 
however, with increases in the number of industry partners manufacturing and selling MBI 
equipment, improvements in overall MBI design and techniques are expected during the next 
five years (Hruska, 2017). Current research regarding the effectiveness of MBI systems 
developed in recent years is summarised below. 

Results from retrospective studies are promising in terms of the effectiveness of MBI in breast 
cancer detection. Three studies identified in Holbrook & Newel’s (2015) literature review 
reported relatively high rates of sensitivity and moderate specificity, ranging from 91% to 96% 
and 60% to 77%, respectively. They also report on a meta-analysis conducted on studies using 
symptomatic samples, which found MBI calculated a sensitivity of 95% and a specificity of 80%; 
however, it is important to note that the use of symptomatic samples may artificially inflate 
examination accuracy.  

Together, these results suggest that recent advancements in MBI technology have improved the 
potential for MBI to be successfully used in the early detection of cancer, particularly given 
previous improvements in its ability to detect relatively small lesions (National Horizon 
Scanning Unit, 2009). That said, sensitivity is still found to be lower with lesions of smaller sizes. 
One study identified in Berg's (2016) literature review found that although overall sensitivity for 
MBI in detecting 357 known lesions was 87%, this reduced to 71% for lesions 5mm or smaller 
and 76% for lesions 6 to 10mm in diameter; sensitivity was 93% for lesions 11 to 15mm in 
diameter, and 98% for lesions 16mm or larger. Reduced sensitivity for relatively smaller lesions 
was also found in a study of 67 patients identified in Even-Sapir et al.'s (2016) literature review, 
which found sensitivity of 90% for MBI in overall lesion detection, but 60% sensitivity in lesions 
smaller than 1cm. Additionally, one retrospective study identified in Wahl's (2016) review found 
that the sensitivity of MBI for detecting invasive ductal breast cancer (86%) was significantly 
higher than sensitivity for detecting invasive lobular breast cancer (58%).  

Overall, these findings suggest that there are subsets of cancers – relatively small lesions and 
lobular cancer – that may remain undetected by MBI. That said, the evidence in this area is not 
clear-cut, with an additional study identified in Even-Sapir et al.’s (2016) review finding high 
rates of sensitivity (89%) for lesions smaller than 1cm, using a sample of 139 patients. 
Furthermore, there are several studies indicating that slight alterations to the MBI examination 
process or image interpretation may improve overall effectiveness. For instance, there is some 
indication that routinely taking two sets of images in an MBI examination would improve cancer 
detection. One study identified in Holbrook & Newel's (2015) literature review found that the 
specificity of MBI significantly increased from 83 to 95% (p = .008) when a second set of images 
was taken one hour after administering the radiotracers. The authors of this study concluded 
that the time delay allowed for improved differentiation between benign and malignant lesions. 
However, an additional study identified in the review believed that producing a second set of 
images would not be acceptable for patients due to increased duration of breast compression. 

Another possible improvement that could increase MBI effectiveness is the use of a semi-
quantitative approach to image interpretation. In one study identified in the Holbrook & Newel 
(2015) review, lesion-to-background uptake was calculated and used in combination with visual 
analysis to identify potential cancers. Using a ratio of 1.5 or greater led to an increase in the 
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specificity of MBI from 82% to 92%, with this improved specificity being higher than that 
obtained for mammography (82%). 

Because more research is required to establish whether screening using MBI is able to reduce 
mortality due to early cancer detection, much of the research looking at the effectiveness of MBI 
focuses on the improved accuracy of screening when using MBI as a supplement to 
mammography (Hruska, 2017). One study identified in Holbrook & Newel’s (2015) literature 
review used MBI to assess 94 women who had normal findings on screening mammography. 
This study found that 16 of these women had abnormal MBI findings, with two of these 
abnormal findings being confirmed as cancers. Two other studies identified in Hruska's (2017) 
review found that supplementary MBI screening resulted in an incremental cancer detection 
rate ranging from 13.1 to 16.5 cancers per 1,000 women screened, compared with 
mammography alone. Although these results are promising, more information is needed before 
it can be determined whether MBI screening could be used as an alternative to mammography, 
rather than a supplement (Hruska, 2017). 

9.4.3. What cost and safety findings have been reported? 

Systematic and/or literature reviews 

High doses of radiation remain a concern for MBI, with most research using effective dosages in 
the range of 6.3 to 9.4 mSv (Adrada et al., 2016; Berg, 2016). Additionally, because the 
radiotracers are systematically distributed throughout the whole body, this radiation exposure 
is not limited to the breast but instead places most of the radiation burden on the upper and 
lower intestines (Adrada et al., 2016; Holbrook & Newel, 2015). 

That said, recent advances in MBI technology have led to a decrease in the administered dose of 
radiotracers required for imaging, and therefore the radiation dosage. The literature review 
conducted by Adrada et al. (2016) identified a 2010 study which found that improved MBI 
systems could produce images of sufficient quality with an effective radiation dose of 2.4 mSv. 
This result was replicated in an additional study identified in Berg's (2016) review that found 
that an improved MBI system was able to maintain cancer detection performance using an 
effective dosage of approximately 2.4 mSv. Although promising, this effective dosage is still 
higher than the 2.0 mSv (or 2.0 mGy) mean glandular dose guideline recommended for FFDM by 
the BreastScreen Australia National Accreditation Standards (BreastScreen Australia, 2015); 
lower dosage still needs to be achieved before MBI can be incorporated into standard screening 
procedures (Adrada et al., 2016). This is a large focus of current research, with one team 
currently trialling an MBI system using an effective dose of approximately 1.3 mSv (Berg, 2016). 

Prospective studies 

The cost of MBI performed as an adjunct to mammography screening was estimated in one 
prospective study of 1,585 women with dense breasts (BIRADS 3 or 4; Hruska et al., 2015). In 
total, combined screening mammography plus MBI led to 279 diagnostic workups (18% of the 
sample), 67 biopsies (4% of the sample), and yielded 19 malignancies (PPV3 = 28%). This was 
compared with five malignancies identified through mammography alone (PPV3 = 25%). The 
addition of MBI increased the cost of screening per patient from $176 for mammography alone 
to $571 for supplementary MBI. However, because the number of malignancies detected was 
higher for the MBI and mammography combination, the cost per cancer detected was lower 
overall for the combination ($47,597) compared with mammography alone ($55,851). This 
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finding suggests that the improved rate of detection using MBI as a supplement to 
mammography may compensate for the higher direct costs. 

9.4.4. Does this innovation show high sensitivity and specificity for women with dense 
breasts and women who have had breast surgery/augmentation compared to 
digital mammography? 

Systematic and/or literature reviews 

Existing research suggests that MBI is a highly promising imaging modality for women with 
mammographically dense breasts (Hruska & O’Connor, 2013). Two studies identified in 
Holbrook & Newel’s (2015) literature review found that MBI was significantly more sensitive for 
women with dense breasts (with dense breasts defined using the BIRADS 3 or 4 categories) than 
mammography. The sensitivity of MBI in these studies ranged from 82% to 83%, whereas the 
sensitivity of mammography ranged from 27% to 44%. No significant differences in specificity 
were identified. Interestingly, one of these studies found that combining MBI with 
mammography produced even higher sensitivity for women with dense breasts (91% compared 
with 82% for MBI alone and 27% for mammography alone).  

An additional study identified in Holbrook & Newel’s (2015) review found that MBI was able to 
detect known cancers with equal sensitivity for women with (95%) and without (97%) dense 
breasts (defined as BIRADS 3 and 4). Furthermore, in 20 cases of cancer that were undetected by 
mammography, MBI was able to detect 100% of cancers in less dense breasts and 93% in more 
dense breasts. This increase for women with dense breasts needs to be offset against the higher 
rates of radiation used in MBI. This is a particular concern for women with dense breasts due to 
their already increased risk of malignancy (Holbrook & Newel, 2015). 

Results in this area are promising, with one study identified in Adrada et al.'s (2016) literature 
review able to demonstrate high levels of sensitivity (81%) and specificity (94%) using single-
head MBI for screening 1,585 women with dense breasts (defined as BIRADS 3 or 4), using a 
radiation dosage of 2.4 mSv. This result was replicated at the same dosage level in an additional 
study identified in the review, which found an incremental detection rate of 7.7% for single-
headed MBI compared with mammography, using a community-based sample of 1,696 women 
with dense breasts. This dose is higher than the effective dose for mammography and DBT (1.2 
mSv), however the increase in cancer detection rate potentially offsets the slightly higher 
radiation dose for this population (Adrada et al., 2016). 

It is also important to note that the results found above may underestimate the improvement 
gained by supplementing FFDM with MBI. In addition to this horizon scan, Allen + Clarke has also 
prepared a literature on breast density and the use of mammography for breast cancer 
screening for asymptomatic women. We note that the use of BIRADS to assess breast density can 
result in unreliable allocation between BIRADS categories 2 and 3. This is because density 
classification can be affected by factors like hormone levels and weight and inter/intra reader 
variability. It is possible for women to be classified as having non-dense breasts (2) in one 
mammogram but be reclassified to having more dense breasts in the next mammogram (and 
vice versa). This creates a level of unreliability that could account for smaller-than-expected 
incremental increases in CDR between women with more dense or less dense breasts. It may be 
that density classifications which report CDR, recall and false positives by 25th percentile (very 
dense) and 75th percentile (very fatty) could result in clearer (and possibly truer) incremental 
differences in CDR by density. 
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9.4.5. Is there evidence that this innovation is more acceptable to women (in general 
and by ethnic group) compared to digital mammography? 

Systematic and/or literature reviews 

No specific information on the acceptability of MBI to women was identified; however, the 
average length of time for an MBI examination (40-45 minutes) is substantially longer than the 
length of time needed for mammography, which may be undesirable to some individuals 
(Holbrook & Newel, 2015). 

9.4.6. Does this technology reduce deaths due to breast cancer through early detection? 

Current research is not sufficient to be able to identify whether MBI is able to reduce deaths due 
to breast cancer through the early detection of cancer in asymptomatic women (Holbrook & 
Newel, 2015). 

9.4.7. Has this innovation been implemented into a national screening program? If so, 
what outcomes have been achieved? What implementation issues arose? 

Molecular breast imaging has not been incorporated into any national screening programs. 

9.4.8. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there consensus in position statements? 

No national position statements on the use of MBI in breast cancer screening were identified in 
the literature search. 
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10. SPECTROSCOPY 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The Bulletin on new and emerging technologies for breast cancer detection published in 2009 
discussed early research and development of surface-enhanced laser desorption ionisation time-
of-flight mass spectroscopy (SELDI-TOF) as a tool for analysing breath testing samples as an 
emerging biomarker test for breast cancer. “SELDI-TOF is capable of identifying proteins over a 
large size range and is sensitive down to the femtomolar level” (National Horizon Scanning Unit, 
2009, p.60). 

10.1. What is spectroscopy? 

Spectroscopy is the study of the interaction between matter and electromagnetic radiation. 
Spectroscopic techniques in biomedical applications (including in application for breast 
imaging) are recognised by a number of terminologies including, for example, Raman 
spectroscopy (RS; Jermyn et al., 2016), optical mammography, diffuse optical imaging,  near-
infrared spectroscopy, optical transillumination spectroscopy (Akbari Sari, Mobinizadeh, & 
Azadbakht, 2013), radiofrequency spectroscopy, and magnetic resonance spectroscopy (which 
is used in conjunction with magnetic resonance imaging, typically for diagnostic and treatment 
purposes).  

The literature regarding spectroscopy’s potential application in breast cancer screening is 
limited at this time. As such, this horizon scan only focuses on the terminology/techniques 
outlined in those articles – though we acknowledge that other spectroscopic technologies are in 
development. While spectroscopic techniques are labelled differently, we have assumed that 
fundamentally they share a similar basis. For the avoidance of doubt, when we mention specific 
spectroscopic techniques (eg, RS), we will label it as such, and where we mention “spectroscopic 
techniques” we discuss the techniques more generally as they are mentioned in the literature. 
Electrical impedance spectroscopy is discussed in the tomography section of this horizon 
scanning paper (NB it is another name for electrical impedance tomography).  

RS techniques and optical mammography are the most comprehensively described in the 
literature relating to breast cancer screening. 

Raman spectroscopy 

This is an optical technique with the capability of non- or minimally-invasively determining 
molecular information from biological tissue. Inelastic scattering of light was first observed by 
Indian Nobel Laureate C V Raman in 1928 but was not reported for biomedical applications until 
1970. Subsequent improvements in light sources and signal detection have made possible the 
emergence of RS techniques across a wide range of applications (Jermyn et al., 2016).  

Most light scattering in tissue is elastic (that is, there is no energy exchange between the photons 
and the molecules – Rayleigh scattering). However, in tissue, typically only one in several million 
photons undergoes inelastic scattering through energy exchange with the vibrational or 
rotational modes of molecular bonds. This low probability makes detection of Raman-scattered 
light challenging, especially on the large background of elastic scattering as well as fluorescence 
and phosphorescence from the tissue. UV or short-wavelength visible light gives the largest 
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Raman signal from tissue; however, this is more than offset by the high fluorescence 
background, which falls off markedly in the near-infrared range. Compared with fluorescence 
from biomolecules, which is characterized by a few, rather broad features (tens of nm wide), 
Raman spectra from tissue typically have multiple sharp peaks (~few nm wide), allowing the 
broad fluorescence background to be subtracted. The spectral shift between the incident light 
and the Raman spectroscopic light is also small, making spectral separation from the dominant 
elastic-scattering light difficult (Jermyn et al., 2016).  

Technological advances have led to increased signal and contrast, enabling shorter and more 
clinically practical acquisition times. Advances include stable diode laser sources, high-
throughput and high-resolution spectrographs and sensitive array detectors. Clinical practicality 
of RS has also been significantly enhanced using fibre optic light delivery and collection, as well 
as small and high-efficiency spectral filters to remove background light. In addition, powerful 
spectral analysis and classification algorithms have been developed and implemented on 
portable computers (Jermyn et al., 2016).  

In oncology, RS has been shown to be highly sensitive to the altered ‘molecular signatures’ of 
many different cancers (Jermyn et al., 2016). RS techniques for disease detection include 
Spontaneous Raman spectroscopy (SpRS), Confocal Raman spectroscopy, Spatially offset Raman 
spectroscopy (SORS), Coherent Raman spectroscopy (coherent RS) and coherent anti-Stokes 
Raman spectroscopy (CARS), and Surface enhanced Raman spectroscopy (SERS). Each of these 
techniques, depending on their biomedical application, differ in terms of light source, acquisition 
time, spatial resolution and signal/background (Jermyn et al., 2016).  

Many advantages have been identified with Raman spectroscopy. It is described as well-suited to 
clinical translation as it does not use exogenous contrast agents, thereby enabling easier 
integration into clinical workflow and reduced regulatory barriers. Furthermore, recent 
advances in instrumentation and spectral analysis have allowed for sub-second acquisition 
times and high diagnostic performance – the ability to make near real-time measurements is 
important for in vivo interventional applications. Raman-based imaging and spectroscopy 
systems can also be made portable and clinically ergonomic, for example, hand-held tools have 
been developed specifically for in vivo Raman spectroscopy (Jermyn et al., 2016). 

However, Jermyn and colleagues have identified several challenges in the clinical 
implementation of Raman spectroscopic techniques. The Raman signal is typically dominated by 
elastic light scattering and intrinsic tissue autofluorescence. Techniques such as SERS and 
Coherent RS (noted above) aim to address this issue with instrumentation changes that can 
substantially improve the measured signal-to-background ratio. However, use of these 
techniques may impede clinical translation, as they often come at the cost of increased 
acquisition time and complex instrumentation cost, for example. Another challenge is that the 
diagnostically relevant signal is also spread across the spectral bands, which limits the use of 
standard univariate analysis methods – though sophisticated machine-learning techniques have 
been developed that can take advantage of the rich spectral information (Jermyn et al., 2016). As 
with the different types of Raman spectroscopic techniques described above, choosing the most 
appropriate technology to use often involves trade-offs between field-of-view, spatial resolution, 
spectral resolution and acquisition time – more research evaluating the different techniques for 
different applications is needed (Jermyn et al., 2016). 
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Optical mammography 

This technique, which may involve slight breast compression, employs near-infrared light – 
which is usually in the wavelength range of 670-970nm – to non-invasively probe the breast. 
Over this spectral region, haemoglobin is the dominant contrast agent. “Haemoglobin 
concentration and its oxygen saturation are two key parameters that may allow not only the 
detection of cancer, but also the discrimination between malignant and benign breast lesions 
using optical methods” (Akbari Sari et al., 2013, p.45). There are three optical mammography 
technologies: 

• Continuous Wave (CW) in which light dilution at breast surface is measured 

• Time Domain (TD) which involves illuminating the breast with short light pulses 

• Frequency Domain (FD) in which system flows continuous light currents in oscillation 
fields at higher frequencies – in the tens to hundreds of MHz – into the breast tissue 
(Akbari Sari et al., 2013). 

10.2. Summary of key findings 

• The potential use of spectroscopic techniques in breast cancer screening of 
asymptomatic populations is not currently clear, with recent research focusing on 
developing and refining technology for clinical testing.  

• There is currently no indication of the timeframe in which the full clinical potential of 
spectroscopic techniques for breast cancer detection of asymptomatic people will be 
realised; however, results from clinical studies indicates that optical mammography 
has the potential for clinical use in high risk groups. Research and development into 
spectroscopy for breast cancer detection is emerging and advancing. 

• Current research is not sufficient to be able to identify whether spectroscopy as a 
screening procedure can reduce deaths due to breast cancer through early detection. 

• Spectroscopic techniques have not been incorporated into any national breast 
screening programs, nor are there any national position statements that have been 
released on their use in breast cancer screening for asymptomatic women. 

10.3. Literature search results (number of studies returned) 

A total of 25 articles were returned from the literature search that related to different forms of 
spectroscopy. None of the articles returned related to screening asymptomatic populations with 
a screening application, therefore, we will only give a brief overview of the technologies in 
relation to the research questions, as applicable. All but two articles were excluded as they did 
not meet the criteria for inclusion (i.e., studies were excluded because they had non-human 
subjects, were a combined modality with another breast detection/imaging tool, and/or related 
to diagnosis or treatment of breast cancer). 
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Systematic and/or literature reviews 

Two systematic reviews related to RS (with breast and other applications) (Jermyn et al., 
2016) and optical mammography, including diffuse optical imaging and near-infrared 
spectroscopy (Akbari Sari et al., 2013), were included. 

RCTs 

None identified. 

Prospective studies 

None identified. 

Retrospective studies 

None identified. 

Grey literature 

A search of the U.S. National Library of Medicine ClinicalTrials.gov website for “breast 
cancer” and “spectroscopy” identified 65 related clinical trials, with one related to 
spectroscopy for breast cancer screening purposes: ‘Light Scattering Spectroscopy for 
Detection of Breast Cancer’ at the USC Norris Comprehensive Cancer Center in Los 
Angeles, California. The trial involves a light-scattering spectroscopy procedure on 
healthy people with no evidence of disease, people with Stage II and Stage IIIA, B, and C 
breast cancer15. 

10.4. Study findings and discussion 

10.4.1. What stage of development or trial is this innovation at? 

There have been a number of technological advances in spectroscopic techniques generally over 
the past 20 years (Jermyn et al., 2016), which have been discussed above. Research so far has 
not focused on trialling the application of spectroscopic techniques for population-based breast 
screening of asymptomatic women, though there is one clinical trial for the application of light-
scattering spectroscopy for breast cancer detection currently recruiting6. 

In terms of its application for breast cancer, techniques under development include optical 
coherence tomography, and non-optical methods such as radiofrequency spectroscopy (Jermyn 
et al., 2016). There have been several studies involving the application of RS to breast cancer 
diagnosis – but most have used ex vivo human tissue sampling or animal models (Jermyn et al., 
2016). Early human studies using Raman spectroscopy, however, show some promise:  

“The first in vivo RS [Raman spectroscopy] study, using <1 s integration 
time, in patients was reported by Haka et al. in 9 patients undergoing 
partial mastectomy and claimed 100% accuracy in classifying tissue as 
tumor versus non-tumor. However, the statistical significance of this result 

                                                             

15 Available at: 
https://clinicaltrials.gov/ct2/show/NCT01755208?term=spectroscopy&cond=breast+cancer&rank=6 

http://www.clinicaltrials.gov/
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was limited (Haka et al. 2006). Three years later, the same group 
published a prospective analysis on ex vivo samples showing 83% 
sensitivity and 93% specificity (Haka et al. 2009)” (Jermyn et al., 2016). 

Akbari et al. (2013) suggested that current clinical application of optical mammography could be 
as a diagnostic supplement alongside conventional mammography for differentiating benign and 
malignant tumours. Optical mammography was reported to be able to discriminate breast 
cancer and non-cancerous breast tissue with 96% sensitivity and 93% specificity. 

10.4.2. What is its considered potential clinical value in five years? In 10 years? 

The potential for clinical use of spectroscopic techniques as a breast cancer screening modality 
in asymptomatic populations is uncertain within the next five to 10 years, due to the limited 
number of prospective studies or RCT studies in this population. Akbari Sari et al. (2013) stated 
that further studies involving larger sample sizes are needed before optical imaging can be used 
as a reliable tool for predicting breast cancer. Jermyn et al. (2016) noted that as understanding 
of the molecular basis of disease improves, that information can assist with the design of optimal 
Raman spectroscopy systems. 

Jermyn and colleagues stated in relation to a diagnostic application of Raman spectroscopy that 
while:  

“…there have been dozens of single center studies using Raman technology 
in human applications, there have thus far been a very limited number of 
prospective studies, no blinded clinical studies, and no multicenter studies 
conducted to evaluate clinical impact. Moreover, no companies have 
obtained regulatory approval (eg, FDA in the USA, CE Mark in Europe) for 
the use of Raman-based instruments in clinical practice, with the exception 
of Verisante for skin lesion diagnosis (Canada and Europe)” (Jermyn et al., 
2016).  

However, Jermyn and colleagues also said that increased portability, convenience and 
affordability of Raman spectroscopy technology made it increasingly viable for screening 
applications (Jermyn et al., 2016). 

10.4.3. What cost and safety findings have been reported? 

Raman spectroscopic techniques were described as having complex instrumentation costs in 
one article (Jermyn et al., 2016) and other spectroscopic techniques were described as cost-
effective in the other (Akbari Sari et al., 2013), however, there was no evidence reported to 
support either of these statements.  

In terms of safety, infrared imaging and Raman spectroscopy were described as safe and 
nonionized techniques (Akbari Sari et al., 2013; Jermyn et al., 2016).  

10.4.4. Does this innovation show high sensitivity and specificity for women with dense 
breasts and women who have had breast surgery/augmentation compared to 
digital mammography? 

Spectroscopic techniques were discussed as a potentially useful application for high risk, young 
women with dense breasts – the technology may serve as a viable, cost effective and nonionized 
alternative for screening patients who like women with more dense breasts because spectral 
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analysis can predict radiographic density (Akbari Sari et al., 2013), but there were no sensitivity 
or specificity results available.  

There was no indication whether spectroscopic techniques would have an application for 
women who have had breast surgery or augmentation. 

10.4.5. Is there evidence that this innovation is more acceptable to women (in general 
and by ethnic group) compared to digital mammography? 

There was little evidence to suggest that spectroscopic techniques were an acceptable procedure 
for women undergoing breast screening, although both reviews discussed these techniques as 
non-invasive (Akbari Sari et al., 2013; Jermyn et al., 2016). 

10.4.6. Does this technology reduce deaths due to breast cancer through early detection? 

Based on this review, there was no evidence to suggest that spectroscopy reduced deaths due to 
breast cancer through early detection. 

10.4.7. Has this innovation been implemented into a national screening program? If so, 
what outcomes have been achieved? What implementation issues arose? 

Spectroscopy has not been implemented into any national screening programs for breast cancer. 

10.4.8. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there a consensus in position statements? 

No national position statements have been published about spectroscopy as a breast cancer 
screening tool.  
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11. THERMOGRAPHY  

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The studies identified by the 2009 report were, overall, poor quality or reported results that 
could not be generalised to asymptomatic women. Good sensitivity but low specificity was 
common across these studies, which suggested an unacceptably high level of false positives in an 
asymptomatic population. The report noted that thermography was a safe and non-invasive 
screening tool. It did not draw any conclusions about cost. Overall the report found little 
evidence to support thermography as a screening tool for the early diagnosis of breast cancer in 
asymptomatic women.  

Cancer Australia has published a public statement against the use of thermography for the early 
detection of breast cancer, noting that there was insufficient evidence to support the use of 
thermography as a screening tool (Cancer Australia, 2010). 

11.1. What is thermography?  
Thermography is often referred to as thermal imaging, infrared imaging, thermograms, or 
infrared thermograms. For simplification, thermography is used to describe any of the above.  

Thermography is a breast imaging modality that measures radiation from the surface of the 
breast to detect localised temperature variations which could be the result of cancerous or pre-
cancerous cell expansion (Kandlikar et al., 2017). Infrared cameras with specialised lenses and 
sensors are used to record thermal images (thermographs). When interpreting thermographs, 
asymmetry between breasts and the determination of areas of a breast with a high level of blood 
perfusion are key indicators of breast abnormality (Borchartt, Conci, Lima, Resmini, & Sanchez, 
2013).  

Thermographs must be taken under carefully controlled environmental conditions to produce 
the most accurate results (Kandlikar et al., 2017). There are no standard protocols for this, but it 
generally involves the thermographs being taken in a temperature-controlled room with no 
uncontrolled heat or light sources (such as sunlight coming through a window). Prior to 
screening, the patient is often required to avoid using lotions on her chest, remove outer layers 
of clothing and sit in a temperature-controlled waiting room for >15 minutes. 

Three to five images are typically taken of the breasts: a front view, views of each side, and, in 
some cases, two oblique views (Etehadtavakol & Ng, 2013). These capture the entire chest, 
underarms and lymph region. Images are usually taken with the subject in either a standing or 
seated position with their arms raised above their head, on their hips, or on arm rests.  
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11.2. Summary of key findings  

• There is not a large body of evidence that supports the use of thermography as a tool 
for breast screening in asymptomatic women. Most studies use small sample sizes and 
the results vary significantly. Much of the research is focused on different methods and 
technologies for obtaining and interpreting thermographs rather than the actual use of 
thermography for a screening purpose. 

• Current research is not sufficient to be able to identify whether thermography is able to 
reduce deaths due to breast cancer through early detection. 

• Thermography has not been incorporated into any national screening programs. 
Importantly, national position statements discouraging thermography as a breast 
screening tool have been issued in the United States and Australia; however, these are 
often based on quite old literature and do not reflect the developments in the evidence 
that have occurred in more recent years. 

11.3. Literature search results (number of studies returned) 
From the literature search a total of 47 articles relating to thermography were identified. 
Abstract contents were reviewed, and 22 articles were excluded for numerous reasons, 
including: relating to risk assessment or diagnosis rather than cancer detection; involving only 
non-human subjects or symptomatic participants; or being of inadequate quality. A further six 
articles were excluded because they could not be located.  

A total of 19 documents were reviewed to answer the key research questions in relation to the 
use of thermography for breast cancer screening in asymptomatic women.  

Systematic and/or literature reviews 

Four reviews: Borchartt et al., 2013; Etehadtavakol & Ng, 2013; Fitzgerald & Berentson-
Shaw, 2012; Kandlikar et al., 2017 

RCTs 

None identified 

Prospective studies 

Three studies: Rassiwala et al., 2014; Sella et al., 2013; Venkataramani et al., 2015 

Retrospective studies 

Nine studies: Acharya, Ng, Tan, & Sree, 2010; Francis, Sasikala, Bharathi, & Jaipurkar, 
2014; Francis, Sasikala, & Saranya, 2014; Gerasimova et al., 2013, 2014; Kermani, 
Samadzadehaghdam, & EtehadTavakol, 2015; Lanisa, Cheok, & Wee, 2014; Madhu, 
Kakileti, Venkataramani, & Jabbireddy, 2016; Rastghalam & Pourghassem, 2013 

Grey literature 

Three position statements: Cancer Australia, 2010; National Screening Unit, 2010; US 
Food and Drug Administration, 2017 
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11.4. Study findings and discussion 

11.4.1. What stage of development or trial is this innovation at? 

Thermography has been both investigated and utilised as a breast cancer screening tool for 
decades. Advancements in thermograph capturing and interpretation technology mean that it 
continues to be the subject of research and development. The literature indicates that there is no 
consensus around best practice processes and practices for thermography for breast cancer 
screening, suggesting that it would require significantly more development and testing before it 
could be used confidently as a tool for the early identification of breast cancer in asymptomatic 
women. The two key areas of research highlighted in the literature are technologies for 
capturing thermographs, and approaches to image processing. These are discussed below.  

Thermography technologies  

In a literature review of thermography technology, Kandlikar et al. (2017) explain that the 
sensitivity of infrared cameras to temperature variations has significantly improved since the 
1980s. Modern cameras can achieve a temperature difference of <.02 K compared to 0.3 K in 
early generation cameras. This means that the thermographs captured by these cameras are of 
better quality and are easier to analyse than early breast screening thermographs.  

Dynamic infrared thermography captures images over a given time. Dynamic thermographs 
are often undertaken following the application of a cold stress to the breasts, with breasts being 
exposed to cold temperatures of between 5°C and 20 °C for several minutes (Kandlikar et al., 
2017). The purpose of dynamic infrared thermography is to detect variations in temperature 
rhythms produced by cardiogenic and vasomotor frequencies (Gerasimova et al., 2013). 
Kandlikar et al. (2017) summarised four studies using dynamic infrared thermography with 
sensitivity ranging from 53% to 97%. As these studies were conducted on symptomatic 
populations and used a range of analysis software, it is difficult to apply these findings to the 
breast screening of asymptomatic women.  

Rotational thermography is a technique that has been developed to overcome the situation 
where parts of the lower posterior breast are obscured in thermographs because of breast sag. 
The technique involves the breast being imaged from multiple views using a rotating robotic 
arm with an affixed infrared camera (Francis, Sasikala, Bharathi, et al., 2014). In a retrospective 
study of 24 women with healthy breasts and 12 patients with malignant breast cancer, Francis et 
al. used rotational thermography with images taken before and after a cold stress, using texture 
analysis (outlined below). They found 83.3% accuracy under the precooled condition, and 
70.8% accuracy after cooling. They concluded that while cooling did not improve the 
effectiveness of the imaging technique, with further research rotational thermography may have 
potential as an adjunct screening tool.  

A prospective study by Sella et al. (2012) screened a sample of 434 women using a high 
resolution three-dimensional infrared imaging device (3DIRI) coupled with multiparametic 
computer analysis. The sample was divided into two subgroups: a control group of 256 women 
with negative results from a routine mammogram and 178 women with either breast or DCIS. 
The study found that 3DIRI had a sensitivity of 86% for detecting breast cancer compared to 
75% sensitivity for mammography.  
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Thermography image processing  

A key area of thermography research explores different methods for analysing thermographs. 
These include: 

• Texture analysis – a common method for analysing thermographs involves measuring 
the smoothness, coarseness, and regularity of pixels in a thermograph to aid in the 
identification of normal and malignant breast conditions. Acharya et al. (2010) fed 
texture features to a Support Vector Machine classifier for automatic classification of 
normal and malignant breast conditions in a study of 50 thermograms, with 25 from 
women with malignant breast cancer and 25 from subjects with healthy breasts. The 
study found 85.71% sensitivity and 90.48% specificity.  

• Automatic colour segmentation – primary breast thermographs are in grey scale, and 
this can make it difficult for the human eye to identify subtle differences in shade. A 
range of algorithms have been developed to automatically segment images, and these 
continue to be refined to effectively separate and distinguish between clusters of pixels 
(Kermani et al., 2015; Lanisa et al., 2014; and Venkataramani et al., 2015).  

• Wavelet -based multifractal analysis – methods using wavelets have been developed 
to perform multifractal analysis of cardiogenic and vasomotor frequencies in dynamic 
infrared thermography (Gerasimova et al., 2013, 2014). 

• Automated asymmetry analysis – methods have been developed which employ 
segmentation algorithms to calculate and compare the curvature of breasts in 
thermographs (Rastghalam & Pourghassem, 2013). In a retrospective study of 28 
thermographs from nine different medical clinics, Rastghalam and Pourghassem used an 
algorithm based on spectral probable features to perform asymmetry analysis. They 
reported high levels of accuracy but do not include sensitivity or specificity rates. The 
authors found lower levels of accuracy when interpreting low resolution images. In a 
small study of 22 women, 11 with breast cancer and 11 with healthy breasts, Francis et 
al. (2013) tested a curvelet transform based feature extraction method for the automatic 
detection of breast abnormalities. The method had a sensitivity of 81.82% and specificity 
of 100%.  

• Extraction of medically interpretable features – Madhu et al. (2016) developed an 
approach for the automatic extraction of medically interpretable features that are 
designed to differentiate between malignant and non-malignant breast conditions. The 
objective of this approach is to increase thermography specificity. In their study of 
thermographs from 265 subjects, including 78 with cancer and 53 with benign 
conditions, Madhu et al. achieved 99% specificity and 100% sensitivity.  

11.4.2. What is its considered potential clinical value in five years? In 10 years? 

The potential clinical value of thermography in five to 10 years is not explicitly discussed in the 
literature. Specificity and sensitivity of thermography as a breast cancer screening tool varies 
considerably across the studies identified in the literature. Sensitivity ranged from 53% 
(Kandlikar et al., 2017) to 99% (Madhu et al., 2016) and specificity was found to be as low as 
12% (Fitzgerald & Berentson-Shaw, 2012) and as high as 100% (Madhu et al., 2016; Rastghalam 
& Pourghassem, 2013). It is likely that this is due to the range of thermography technologies and 
processes used in the studies and the use of small sample sizes.  
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With the further development and analysis of thermography technologies and image processing 
techniques for breast screening asymptomatic populations (outlined above) the potential 
clinical value of thermography may become clearer and more acceptable. At present, the 
usefulness and effectiveness of thermography for screening asymptomatic women for the early 
detection of breast cancer is not well established in the literature, with a lack of large-scale 
studies and randomised control trials.  

Systematic reviews/ literature reviews  

A systematic review by Fitzgerald and Berentson-Shaw (2012) found that across five studies, the 
sensitivity of thermography was above 70% for the detection of malignancies, but specificity 
ranged between 12% and 85%. Studies with low specificity had high numbers of false positive 
tests. The authors noted that the studies were of an average quality, and that industry funded 
studies had more favourable results than independent studies. As these studies emphasised 
breast cancer diagnosis, rather than screening, the results have limited applicability for the 
purposes of this horizon scan.  

In a survey of thermography image processing literature, Borchartt et al. (2012) explained that 
thermography is a valuable tool for the early detection of breast cancer, but that it was most 
effective when used in combination with another screening tool such as mammography. They 
also noted that there needs to be greater standardisation of thermography methods and 
protocols to support clinical effectiveness, and that this would require significant work.  

Prospective studies  

Rassiwala et al. (2014) undertook a prospective study using breast thermography to screen 
1008 female subjects between the ages of 20 and 60 years who were asymptomatic for breast 
cancer. The study found that sensitivity to detect malignancy was 97.6% and specificity was 
99.17%. For a study with a significant sample size these are good results, however they should 
be treated with caution as the study did not provide an overview of the methodology used for 
interpreting the thermographs and no other large-scale studies have been undertaken to 
corroborate the findings.  

11.4.3. What cost and safety findings have been reported?  

The literature emphasised that thermography is a low-cost breast screening tool, however no 
figures were provided, and no comparisons were made with the costs of mammography.  

As there is no contact with the skin surface and no radiation thermography does not pose a 
safety risk to the patient (Kandlikar et al., 2017).  

11.4.4. Does this innovation show high sensitivity and specificity for women with dense 
breasts and women who have had breast surgery/augmentation compared to 
digital mammography? 

Kandlikar et al. (2017) explained that using thermography to screen women with breast 
implants can be effective as the position of implants at the base of the breast does not 
significantly affect heat transfer in the breast. The authors reported that this was an advantage 
over mammography where there is an issue with tumours hiding in the shadows behind 
implants and failing to be detected. The literature suggested that dense breasts did not 
negatively affect the sensitivity or specificity of thermography in the detection of breast cancer 
(Kandlikar et al., 2017).  
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11.4.5. Is there evidence that this innovation is more acceptable to women (in general 
and by ethnic group) compared to digital mammography? 

The literature did not discuss the acceptability of thermography to women. It suggested 
however that as there was no contact with the skin and no compression, it was a painless 
screening tool compared to mammography (Gerasimova et al., 2014).  

Kandlikar et al. (2017) noted that cooling stress, which was often applied prior to dynamic 
infrared thermograms, could lead to patient discomfort.  

11.4.6. Does this technology reduce deaths due to breast cancer through early detection? 

There was no statistical evidence to suggest that thermography reduced deaths due to breast 
cancer through early detection.  

Etehadtavakol and King (2013) suggested that thermography could detect abnormal 
physiological changes in the breast that may be cancerous five to eight years earlier than these 
irregularities could be found in mammograms. Kandlikar et al. (2017) clarified that this was 
because thermography could detect angiogenesis as this was accompanied by increased 
metabolic activity due to the increased demand of blood to supply the new vessels (Kandlikar et 
al., 2017). Both authors referenced studies conducted outside of the date range for this horizon 
scan, and there does not appear to be a substantial or recent body of research to support these 
claims. Etehadtavakol and King suggested that this possibility of early detection could result in a 
reduction of deaths.  

11.4.7. Has this innovation been implemented into a national screening program? If so, 
what outcomes have been achieved? What implementation issues arose? 

There was no evidence to suggest that thermography has been implemented into a national 
screening program at this stage. 

11.4.8. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there consensus in position statements? 

Position statements have been published in Australia, New Zealand, and the United States of 
America. All three oppose the use of thermography for breast cancer screening.  

Cancer Australia first published a statement on the use of thermography to detect breast cancer 
in 1999, with the most recent revision in 2010. The statement says that “Cancer Australia does 
not recommend the use of thermography for the early detection of breast cancer”. It noted that 
there was insufficient evidence to support the use of thermography for breast cancer screening, 
and referred to three studies from the 1980s that found that thermography could not detect 
small tumours and that less than 50% of breast cancers identified by mammography were 
identified by thermography (Cancer Australia, 2010).  

The New Zealand National Screening Unit, The Cancer Society of New Zealand, The New Zealand 
Breast Cancer Foundation,  and The New Zealand Branch of The Royal Australian New Zealand 
College of Radiologists released a position statement in 2010 stating that they “do not support 
the use of thermography as a breast cancer screening or diagnostic tool as there is insufficient 
evidence to do so” (National Screening Unit, 2010).  
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The US Food and Drug Administration released an official statement on October 27 2017 which 
stated that thermography should not be used as a breast screening substitute for mammography 
(US Food and Drug Administration, 2017). The statement explained that there was no evidence 
to support thermography as a standalone screening tool, and that it was only approved by the 
FDA as an adjunct method of screening for breast cancer. The FDA cautioned that the use of 
thermography as a standalone breast cancer screening tool may result in cancer not being 
detected at an early stage. 
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12. TOMOGRAPHY 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

• Safety: Breast CT delivers a radiation dose approximately equivalent to that of two-view 
mammography, with a more homogenous distribution of radiation dose. Breast CT may be more 
comfortable for women than mammography. 

• Effectiveness: Only one study was identified on the effectiveness of breast CT in 
symptomatic women, which found that breast CT performed equal to or better than 
mammography in: the visualisation of breast lesions; the differentiation between benign breast 
lesions and malignancies; the effect of breast density on lesion visualisation; and the 
visualisation of breast masses. Mammography provided better micro-calcification visualisation. 
Two false positives and seven true positives identified by mammography were not detected in 
breast CT, whereas one small satellite breast cancer was identified by breast CT but not by 
mammography. 

• Cost: The costs of capital equipment and medical services for breast CT were 
undetermined, but the professional fee for breast CT may be higher than that for mammography 
due to longer interpretation time for radiologists. 

Cone-beam breast CT: Not covered in the 2009 report. 

Positron emission tomography (PET):  

• Safety: PET is a non-invasive and safe diagnostic procedure, with the dose of radiation 
equivalent to that of dedicated breast CT.  

• Effectiveness: Only studies using symptomatic samples were identified. The dedicated 
breast PET scan was more effective than whole-body PET at diagnosing breast cancer. The 
generalisability of efficacy results were poor given the inclusion of symptomatic women only; 
however, overall PET had issues with low sensitivity and specificity. 

• Cost: No economic studies on the cost of PET for breast cancer diagnosis were identified. 

Optical coherence tomography (OCT): OCT is being investigated by a team of researchers at 
the University of Western Australia and is thought to be approximately five years away from 
clinical use in breast cancer detection. 

Electrical impedance tomography (EIT):  

• Safety: EIT is non-invasive and does not use radiation. It appears to be safe. 

• Effectiveness: Four studies that assessed the use of EIT as a diagnostic tool for breast 
cancer were identified. Overall, EIT performed poorly at detecting cancers compared with 
mammography and ultrasound, with a diagnostic accuracy of 69% being found in one study of 
symptomatic and asymptomatic women. 

• Cost: Many Australian private companies were offering EIT as a direct-to-market service, 
with one company offering a routine EIT scan for $145. The EIT system itself costs less than 
$50,000. 
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12.1. Tomography as a breast cancer screening modality 
Five different types of tomography used for breast cancer imaging are reviewed in this chapter: 
computer tomography (CT); cone-beam breast CT (CBBCT); positron emission tomography 
(PET); optical coherence tomography (OCT); and electrical impendence tomography (EIT). 
These techniques all fall within the tomography family because they involve imaging the breast 
in sections and then combining these sections together to create an overall image. Where they 
differ is in the use of varying kinds of penetrating waves for the imaging process; whereas CT 
and CBBCT use x-rays to create images, PET uses positron-emitting chemical compounds, OCT 
uses near-infrared light, and EIT uses electrical current. These differences have an impact on the 
safety and effectiveness of the various modalities for breast imaging, which is explored in the 
current chapter. 

A brief description of each of these techniques and their current application to breast cancer 
screening is provided below followed by a summary of evidence for each type of tomography. 

12.1.1. Computer tomography 

Computer tomography (CT; also known as dedicated breast CT or breast CT) is a 3D imaging 
modality that was developed to improve on the relatively low levels of specificity and sensitivity 
obtained using FFDM (Aminololama-Shakeri, Hargreaves, Boone, & Lindfors, 2016). In a typical 
breast CT exam, the subject lies face-down on a table with the examined breast hanging 
suspended (i.e., without compression) through an opening in the table top. The other breast is 
kept out of the imaging space. Approximately 500 projection images are then taken of the breast, 
using an x-ray tube and flat panel detector that rotates 3600 around the breast. The scan takes 
less than 20s for one breast, allowing the scan to be completed in one breath-hold. Breast CT can 
be performed either with (referred to as contrast enhanced CT; CE-CT) or without (referred to 
as unenhanced CT) an intravenous contrasting agent. 

Despite high levels of sensitivity in early trials, dedicated breast CT was suspended as a 
screening and diagnostic tool in the 1970s due to concerns with the level of radiation used, 
relatively low specificity, high equipment cost, and lack of spatial resolution (National Horizon 
Scanning Unit, 2009). Advancements in technology, including flat-panel detectors  and improved 
spatial and temporal resolution, have sparked a renewed interest in breast CT as a screening 
modality (National Horizon Scanning Unit, 2009).  

12.1.2. Cone-beam breast CT 

Cone-beam breast CT (CBBCT) is a variant of CT that uses a cone-shaped x-ray beam and 2D 
detector, as opposed to a fan-shaped x-ray beam and 1D detector. This is a fast procedure that 
produces high spatial and contrast resolution 3D images of the breast (Wienbeck, Lotz, & 
Fischer, 2017). 

To perform a CBBCT scan, subjects lie face down with the examined breast hanging suspended 
without compression through an opening in the examination table, with the other breast kept 
out of the imaging space. The ability to forgo breast compression without compromising 
diagnostic information is one of the primary advantages of CBBCT (Wienbeck et al., 2017). 
Before the 360° diagnostic scan is conducted, a low-dose initial scan is used to assess the breast 
position inside the imaging space. The total scan duration is approximately 10s for each breast, 
with the entire examination taking approximately 10 minutes per breast (Wienbeck et al., 2017). 
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When an intravenous contrasting agent is used in conjunction with CBBCT, the scan is referred 
to as contrast enhanced CBBCT (CE-CBBCT). 

12.1.3. Positron emission tomography 

Positron emission tomography (PET) is an imaging modality that uses positron-emitting 
chemical compounds together with an imaging device to provide information on biochemical 
changes in the body without the need for sample extraction. Most current clinical PET imaging 
uses the chemical compound F-18-fluorodeoxyglucose (FDG), which differentiates between 
different kinds of tissues based on their metabolism of glucose. Tumour cells have increased 
uptake of FDG compared with healthy tissue (Cintolo, Tchou, & Pryma, 2013). When FDG is used 
as the imaging compound in a PET scan, the modality is referred to as FDG-PET. 

Currently, FDG-PET is not routinely used in breast cancer screening because of previously 
identified issues with detecting non-invasive cancers and tumours of small sizes, and 
confounding breast conditions (such as benign and inflammatory lesions) that also increase FDG 
uptake (Cintolo et al., 2013; and Minamimoto et al., 2015). That said, results from the 
implementation of an FDG-PET breast cancer screening program performed in Japan between 
2006 and 2009 are promising; these results are summarised in section 12.5.2. 

12.1.4. Optical coherence tomography 

Optical coherence tomography (OCT) is a non-invasive and agent-free imaging modality. OCT 
uses the light-scattering properties of biological tissue to create image contrast, using near-
infrared wavelengths to potentially produce images deeper into the tissue and in higher 
resolution than other optical imaging modalities (Vakoc, Fukumura, Jain, & Bouma, 2012). OCT 
also has the potential to detect tumour angiogenesis and lymphangiogenesis, furthering its 
potential ability to detect breast cancer in early stages (Vakoc et al., 2012).  

The development of OCT systems for use in breast cancer screening is still in preclinical stages, 
with current systems only able to penetrate up to 2mm in most tissue (Jung & Boppart, 2012; 
and Vakoc et al., 2012). This means that most research into the use of OCT for cancer detection 
or diagnosis involves the use of either animal models or samples obtained via biopsies. 
Additionally, most of this research focuses on the use of OCT in treatment and diagnosis, rather 
than in screening (Jung & Boppart, 2012). As such, no studies using asymptomatic samples were 
identified in our literature scan, and OCT is not discussed further in the results section below. 

12.1.5. Electrical impedance tomography 

Electrical impedance tomography (EIT) works by measuring how fast electricity travels through 
the breast using electrodes placed on or held by the subject, and is therefore a non-invasive and 
radiation-free imaging technique (Forsyth, Borsic, Halter, Hartov, & Paulsen, 2011). Biological 
alterations within cancerous cells cause them to have greater electrical conductivity than 
surrounding breast tissue. Voltage measurement data are used to construct an image of the 
electrical conductivity distribution, which is then assessed for distortions. Previous research has 
suggested that EIT may be affected by the hormones released during menopause, which would 
impact its use for screening in a sub-population of women likely to develop breast cancer; 
however, this has been refuted in one recent study using a symptomatic sample (Zain & Chelliah, 
2014). 
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Research is still ongoing into the development of EIT systems that are able to image the breast 
with sufficient quality to accurately detect breast cancer (Forsyth et al., 2011). Some of these 
systems require breast compression for imaging, whereas others use a setup like breast CT, 
where subjects lay prone on an examination table with the breast hanging suspended through an 
opening in the table top. Because of the early stages of research in this area, there were no 
studies identified that used asymptomatic samples. For this reason, EIT is not considered 
further. 

12.2. Literature search results (number of studies returned) 
From the literature search, a total of 109 articles related to innovations in tomography were 
identified. Abstract contents were then reviewed and 100 of these articles were excluded for 
various reasons, including: use of symptomatic or non-human samples only; focus on diagnosis 
or treatment; focus on system development rather than clinical effectiveness; reporting on 
tomography variants not included in the review; or results not specific to breast cancer. Sources 
that were not peer-reviewed, such as theses and dissertations, were also excluded. One further 
article was excluded because the full-text article could not be accessed (Ruile et al., 2015). 
Articles included in identified literature reviews were not separately reviewed for the current 
scan. 

A total of eight articles were then reviewed to answer the key research questions in relation to 
innovations in DBT for breast cancer screening in asymptomatic women.  

Systematic and/or literature reviews 

Breast CT: Four literature reviews (Aminololama-Shakeri et al., 2016; Lindfors, Boone, 
Newell, & D’Orsi, 2010; O’Connell, Karellas, & Vedantham, 2014; Sarno, Mettivier, & 
Russo, 2015). 

CBBCT: One literature review (Wienbeck et al., 2017). 

PET: One literature review (Cintolo et al., 2013) 

RCTs 

 None identified 

Prospective studies 

 PET: Two prospective studies (Minamimoto et al., 2013, 2015) 

Retrospective studies 

 None identified 

Grey literature 

 None identified 
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12.3. Computer tomography 

12.3.1. Summary of key findings  

• The development of breast CT systems for use in the early detection of breast cancer is 
still in its infancy, with only retrospective studies identified in the literature reviews. 

• There is currently no indication of the timeframe in which the full clinical potential of 
breast CT for the early detection of breast cancer in asymptomatic women will be 
realised. Although breast CT scanning can visualise breast lesions and masses as well as 
or better than mammography, breast CT scanning performs worse in visualising 
microcalcifications. This may limit the incorporation of breast CT as a primary breast 
cancer screening modality in screening for asymptomatic women.  

• Despite initial issues with radiation dose, more recent breast CT scanning systems are 
improving, achieving radiation dose levels comparable to conventional mammography. 
Additionally, cost is unlikely to be a barrier in the use of breast CT for the early 
detection of breast cancer.  

• Although no primary studies were identified, one review of the breast CT literature 
stated that breast CT could play an important role in breast cancer screening for 
women with dense breasts.  

• Findings suggest that breast CT is significantly more comfortable for women than 
mammography, primarily due to the lack of breast compression. 

• Breast CT has not been incorporated into any national screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women. 

• Current research is not sufficient to be able to identify whether breast CT scanning is 
able to reduce deaths due to breast cancer through early detection. 

12.3.2. Study findings and discussion 

What stage of development or trial is this innovation at? 

In their review of the breast CT literature, Lindfors et al. (2010) noted that the development of 
breast CT is still in its infancy, with only prototype scanners currently in use for clinical 
research. Additionally, much of the research is focused on the use of CT for breast cancer 
diagnosis or treatment. No prospective studies or RCTs using asymptomatic samples were 
identified in the literature reviews. Further system refinements are still required – including 
increased spatial resolution, increased frame rates, and increased breast coverage – before 
breast CT can be incorporated into routine screening for asymptomatic women (Lindfors et al., 
2010).  
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What is its considered potential clinical value in five years? In 10 years? 

Systematic and/or literature reviews 

None of the reviews identified provided specific timeframes in which the clinical potential of 
breast CT is expected to be realised for population screening purposes; however, preliminary 
results from retrospective studies are promising. 

Current research suggested that breast CT produced at least equal visualisation of malignant and 
benign breast lesions as FFDM, with better visualisation of masses (Aminololama-Shakeri et al., 
2016; Lindfors et al., 2010; Sarno et al., 2015). These conclusions were verified in a clinical study 
identified in Lindfors et al.'s (2010) review of the breast CT literature. In this study, breast CT 
and mammography was used to compare scans taken from 10 healthy controls and 69 women 
with suspicious lesions. They found that although there were no significant differences between 
breast CT and mammography in terms of visibility of malignant versus benign lesions, masses 
were significantly more visible on breast CT scans (p<.001). Although breast CT was better at 
visualising masses, mammography was significantly better at visualising microcalcifications in 
this study (p<.001).  

The studies identified in Aminololama-Shakeri et al.'s (2016) review of the breast CT literature 
replicated these results; however, these studies used symptomatic samples to determine levels 
of visualisation between breast CT and mammography. Although the results regarding the 
visualisation of masses were promising, both Aminololama-Shakeri et al. (2016) and Lindfors et 
al. (2010) concluded that the poor visualisation of microcalcifications compared to FFDM was a 
significant barrier to the primary use of breast CT in screening assessments. 

Lindfors et al. (2010) stated that contrast enhanced CT (CE-CT) provided more promising 
results, with one study finding that CE-CT was better able to visualise malignant breast lesions 
than mammography; however, this study used a symptomatic sample, limiting the 
generalisability of its results to screening assessments. Recent developments in breast CT 
scanning may also be improving the visualisation of microcalcifications. In a review of the 
existing literature, Wienbeck et al. (2017) found that previous studies using breast phantoms 
and mastectomy specimens demonstrated that breast CT could visualise calcifications as small 
as 0.21 to 0.25mm in diameter. 

Overall, three reviews of the literature concluded that breast CT may not become a primary 
screening modality, but could be useful as an adjunct to mammography for validation and 
diagnosis (Aminololama-Shakeri et al., 2016; Lindfors et al., 2010; O’Connell et al., 2014). 

What cost and safety findings have been reported? 

Systematic and/or literature reviews 

Despite initial problems with radiation dose with the first breast CT scanners, Aminololama-
Shakeri et al.'s (2016) review identified two studies that reported similar radiation dose levels 
between breast CT scans and conventional mammography; however, the average levels of dose 
for breast-CT in these studies (ranging from 5.4 to 8.2 mGy) were still above the 2.0 mGy mean 
glandular dose guideline recommended for FFDM by the BreastScreen Australia National 
Accreditation Standards (BreastScreen Australia, 2015). Additionally, two studies reviewed by 
O’Connell et al. (2014) found that the radiation dose distribution was more uniform in breast CT 
compared with mammography. It was anticipated that there would be a substantial radiation 
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dose reduction with further advancements in x-ray detector technology and image 
reconstruction techniques (O’Connell et al., 2014). 

The review conducted by Aminololama-Shakeri et al. (2016) did not specify costs, however the 
authors noted that the base costs of breast CT should allow for the deployment of breast CT 
systems to most breast imaging clinics. 

Does this innovation show high sensitivity and specificity for women with dense breasts 
and women who have had breast surgery/augmentation compared to digital 
mammography? 

Systematic and/or literature reviews 

In their review of the breast CT literature, O’Connell et al. (2014) stated that breast CT could 
potentially play an important role in the detection of cancer in dense breasts. They did not cite 
any studies to support this claim, however they note the benefit of 3D images in being able to 
visualise abnormalities in any plane, and in being able to quantitatively estimate breast density. 
Improved conspicuity may overcome some of the limitations associated with tissue 
superimposition in mammography. 

Is there evidence that this innovation is more acceptable to women (in general and by 
ethnic group) compared to digital mammography? 

Systematic and/or literature reviews 

Three clinical trials included in the review conducted by Aminololama-Shakeri et al. (2016) 
found that women were more comfortable using breast CT than mammography. This was largely 
due to the lack of breast compression for breast CT. This finding was confirmed in a study of 209 
women identified in Lindfors et al.'s (2010) review. This study asked the women to rate the 
comfort of breast CT compared with mammography on a scale of 1 to 10, with 1 indicating 
better comfort for mammography and 10 indicating better comfort for breast CT. Results 
showed a median rating of 10 and a mean of 8.8, indicating greater comfort for the breast CT. 
Furthermore, overall comfort for the breast CT was rated on a scale from 1 (very uncomfortable) 
to 10 (extremely comfortable), with a mean of 8.1 and median of 8 being obtained from the 
women’s ratings. The most common issues with the breast CT were difficulties in arching the 
back sufficiently to push the breast forward and maximise imaging coverage, and discomfort in 
the neck during scanning. 

Does this technology reduce deaths due to breast cancer through early detection? 

Current research is not sufficient to be able to identify whether breast CT scanning is able to 
reduce deaths due to breast cancer through early detection of cancer in asymptomatic women. 

Has this innovation been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

Breast CT scanning has not been incorporated into any national screening programs. 
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Has a national position statement been published about this innovation, and if so, what is 
the position? Is there consensus in position statements? 

No national position statements on the use of breast CT in breast cancer screening were 
identified in the literature search. 

12.4. Cone-beam breast CT 

12.4.1. Summary of key findings  

• The research assessing the use of CBBCT is still in the early stages, with research not 
yet advancing to clinical tests using asymptomatic samples. 

• There is currently no indication of the timeframe in which the full clinical potential of 
CBBCT for breast cancer detection will be realised. That said, current results using 
symptomatic samples are promising in terms of its ability to improve on FFDM. 

• Current research suggests that there is no statistically significant difference in radiation 
dose from CBBCT scans compared with FFDM. Findings related to the cost of CBBCT 
were not reported in the identified literature. 

• No studies were identified that assessed the performance of CBBCT scans in 
asymptomatic women with dense breasts, however results from symptomatic samples 
suggest that CE-CBBCT may improve scan sensitivity for women with dense breasts 
compared with FFDM. 

• Reported patient comfort is higher for CBBCT than for mammography. 

• CBBCT has not been incorporated into any national screening programs, nor are there 
any national position statements that have been released on its use in breast cancer 
screening for asymptomatic women. 

• Current research is not sufficient to be able to identify whether CBBCT scanning is able 
to reduce deaths due to breast cancer through early detection. 

12.4.2. Study findings and discussion 

What stage of development or trial is this innovation at? 

The research assessing the use of CBBCT is still in the early stages, with research not yet 
advancing to clinical tests using asymptomatic samples. Instead, much of the current research 
focuses on the use of CBBCT in the diagnosis and treatment of breast cancer patients. 

What is its considered potential clinical value in five years? In 10 years? 

Systematic and/or literature reviews 

Based on theoretical considerations and a review of the current literature, Wienbeck et al. 
(2017) concluded that the early detection of breast cancer using FFDM could be significantly 
improved by the implementation of CBBCT, particularly for women with dense breasts. 
However, the authors noted that all existing research on the use of CBBCT to detect breast 
cancer used symptomatic samples rather than a screening population, which could artificially 
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inflate the sensitivity and specificity found for CBBCT. They also noted that because of limited 
experience with CBBCT, it would not currently be advisable to replace FFDM with CBBCT. 
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What cost and safety findings have been reported? 

Systematic and/or literature reviews 

Wienbeck et al.'s (2017) review of the literature found that there was no significant difference in 
the mean glandular dose (MGD) between non-contrast CBBCT and FFDM in published studies; 
however, the MGD comparators used were for diagnostic not screening mammography. The 
mean MGD for CBBCT exams ranged from 8.1 to 10.7 mGy, compared with 6.1 to 16.9 mGy for 
diagnostic two-view mammography (up to 11 images, which is much higher than the standard 
four images taken for a screening mammogram), with differences in individual studies not being 
statistically significant.  

That said, two other studies in the review found that the total radiation dose for a CE-CBBCT 
scan was approximately twice that of a non-contrast CBBCT scan; however, no direct 
comparison in dosage levels for CE-CBBCT and FFDM was identified in the literature. 

Findings related to the cost of CBBCT were not reported in the identified literature. 

Does this innovation show high sensitivity and specificity for women with dense breasts 
and women who have had breast surgery/augmentation compared to digital 
mammography? 

Systematic and/or literature reviews 

In their review of the CBBCT literature, Wienbeck et al. (2017) identified one study using a 
symptomatic sample that suggested CE-CBBCT improved the sensitivity for detecting malignant 
breast lesions for patients with more dense breast tissue (i.e., BIRADS 3-4). In this study, CE-
CBBCT had a sensitivity of 99% compared with 78% for FFDM. This increased sensitivity was 
not found for non-contrast CBBCT however, suggesting that CE-CBBCT could be a better option 
for women with more dense breasts.  

Is there evidence that this innovation is more acceptable to women (in general and by 
ethnic group) compared to digital mammography? 

Systematic and/or literature reviews 

Because of the lack of breast compression in CBBCT, greater comfort would be expected in 
CBBCT compared to mammography. Indeed, Wienbeck et al. (2017) cited five studies that found 
that patient comfort was higher for CBBCT than for mammography, including two clinical 
studies where approximately 87% of women reported that CBBCT was either equal in comfort 
or more comfortable than mammography. The neck, the shoulder, and the ribs were reported to 
be the most prominent areas of discomfort for CBBCT, with refinements in the design of the 
examination table top leading to greater patient comfort in these areas in one study reviewed.  

Does this technology reduce deaths due to breast cancer through early detection? 

Current research is not sufficient to be able to identify whether CBBCT scanning is able to reduce 
deaths due to breast cancer through early detection of cancer in asymptomatic women. 

Has this innovation been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

CBBCT scanning has not been incorporated into any national screening programs. 
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Has a national position statement been published about this innovation, and if so, what is 
the position? Is there consensus in position statements? 

No national position statements on the use of CBBCT in breast cancer screening were identified 
in the literature search. 

12.5. Positron emission tomography 

12.5.1. Summary of key findings  

• Research into the use of PET for early breast cancer detection in asymptomatic women 
has progressed to prospective clinical studies, however further research is still 
required on the safety and effectiveness of PET as a screening test. 

• There are no clear timeframes regarding the clinical potential of PET as a screening test 
being reached; however, current research suggests that there may still be limitations 
with the ability of PET to detect small tumours. 

• Relatively high levels of radiation continue to be an issue for PET systems, and cost is 
also identified as being potentially prohibitive to its incorporation into routine 
screening for asymptomatic women. 

• No information was identified on the sensitivity and specificity of PET for 
asymptomatic women with dense breasts or women who have had breast 
surgery/augmentation compared with FFDM. 

• No information was identified on the acceptability of PET for women compared with 
FFDM. 

• Results from a nationwide FDG-PET cancer screening program in Japan found that FDG-
PET had a sensitivity of 84% in detecting breast cancer; this was not significantly 
different from rates found for mammography. Issues with radiation dosage and the cost 
of FDG-PET scans were noted as a barrier for incorporation into other screening 
programs. 

• There have been no national position statements released regarding the use of PET for 
the early detection of breast cancer in asymptomatic women. 

• Current research is not sufficient to be able to identify whether PET imaging is able to 
reduce deaths due to breast cancer through early detection of cancer in asymptomatic 
women. 

12.5.2. Study findings and discussion 

What stage of development or trial is this innovation at? 

Research into the use of PET for the early detection of breast cancer in asymptomatic women is 
more advanced than for the other forms of tomography covered in this chapter, with results 
already being reported from its implementation in a nationwide cancer screening program in 
Japan. That said, there are still relatively few studies assessing the effectiveness and safety of 
PET for breast cancer screening for asymptomatic women, with research largely focusing on the 
diagnosis or treatment of cancer, or on the use of PET for other types of cancer. Further research 
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is needed before clear conclusions can be drawn about the effectiveness and safety of PET 
compared with FFDM. 

What is its considered potential clinical value in five years? In 10 years? 

Systematic and/or literature reviews 

There were no clear timeframes identified in the literature regarding the clinical potential of 
PET being reached, however information is growing regarding the efficacy of PET in the early 
detection of breast cancer.  

A literature review conducted by Cintolo et al. (2013) cited two studies that found sensitivity 
rates of 68 to 83% using FDG PET for breast cancer detection. This variability in sensitivity was 
potentially due to differences in tumour size, with two further studies identified in the review 
finding that FDG PET had difficulty in detecting tumours that were less than 8 to 10mm in 
diameter. Despite this identified difficulty, the review noted the recent developments in PET 
technology, including the FDG positron emission mammography (PEM), which only images the 
breast during an examination rather than the whole body. One study included in the review 
found that FDG PEM had significantly improved sensitivity compared with the whole-body PET 
(95 versus 87%, respectively), particularly for the detection of lesions less than 2cm in diameter. 
Comparison with FFDM was not provided in this study. 

Overall, Cintolo et al.'s (2013) review of the PET literature concluded that due to limitations with 
whole-body PET imaging, including safety, cost, and accuracy, it is unlikely that it would be 
integrated into routine screening for asymptomatic women. 

Prospective studies 

Data collected from a nationwide FDG-PET cancer screening program in Japan found that FDG-
PET scanning detected breast cancer with similar sensitivity to mammography (Minamimoto et 
al., 2015). Further studies on this screening program and its outcomes are provided below. 

What cost and safety findings have been reported? 

Systematic and/or literature reviews 

The review of PET literature conducted by Cintolo et al. (2013) identified high levels of 
cumulative radiation being a particular concern for PET imaging, as it often scans the entire 
body rather than just the breast being examined. The authors noted that work is currently 
ongoing to develop systems that can produce adequate images with low doses of radiation, 
however they did not provide a timeframe in which these new systems would be ready for 
clinical use.  

Cintolo et al. also noted that FDG PET was a much more expensive choice than other imaging 
modalities, currently costing around USD$1,000 per examination. The authors felt this limited its 
usefulness for breast cancer screening assessments. These concerns with the radiation dosage 
and cost associated with FDG-PET screening were also reflected in results from a nationwide 
FDG-PET cancer screening program in Japan (detailed further below; Minamimoto et al., 2013, 
2015). 
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Does this innovation show high sensitivity and specificity for women with dense breasts 
and women who have had breast surgery/augmentation compared to digital 
mammography? 

No information was identified on the sensitivity and specificity of PET for asymptomatic women 
with dense breasts or women who have had breast surgery/augmentation compared with 
FFDM. 

Is there evidence that this innovation is more acceptable to women (in general and by 
ethnic group) compared to digital mammography? 

No information was identified on the acceptability of PET for women compared with FFDM. 

Does this technology reduce deaths due to breast cancer through early detection? 

Current research is not sufficient to be able to identify whether PET is able to reduce deaths due 
to breast cancer through early detection of cancer in asymptomatic women. 

Has this innovation been implemented into a national screening program? If so, what 
outcomes have been achieved? What implementation issues arose? 

A nationwide FDG-PET cancer screening program was conducted in Japan between 2006 and 
2009 for asymptomatic individuals (Minamimoto et al., 2013, 2015).  

A total of 155,456 individuals (92,739 men, 62,073 women, and 644 gender unidentified) 
participated in the screening program, with screening performed by 233 facilities. This program 
aimed to detect any type of cancer at an early stage, rather than breast cancer. For this reason, 
both whole-body PET scanners (61% of scans) and dedicated PET scanners (39% of scans) were 
employed in the program. FDG-PETs were also combined with other imaging modalities (such as 
CT, MRI or ultrasound) in at least one case at 85% of participating facilities. 

Overall, 478 suspected cases of breast cancer were detected in the screening program including 
for five men, however sensitivity was only reported for the 473 women with possible breast 
cancer (Minamimoto et al., 2015). Sensitivity in detecting breast cancer was 84% for FDG-PET 
scans, with a PPV of 43%. The sensitivity of FDG-PET was not significantly different from the 
sensitivity obtained for mammography (78%; p=.34). Specificity was not identified in this 
screening program. 

The authors concluded that FDG-PET cancer screening is not a completely established method, 
and that one-time FDG-PET screening scans are likely to miss some malignancies. Radiation 
exposure remained an issue, and the risks and benefits of increased radiation exposure using 
FDG-PET should be explained to participants. Furthermore, the authors noted the high cost of 
the screening program, with a cost of $1,000 per scan in Japan and $2,000 per scan in the United 
States. They suggested that maximising cost-effectiveness would require limiting the use of FDG-
PET to high risk individuals. 

Has a national position statement been published about this innovation, and if so, what is 
the position? Is there consensus in position statements? 

No national position statements on the use of PET in breast cancer screening were identified in 
the literature search. 
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READING STRATEGIES 

This section covers: 

• Computer aided detection followed by a chapter on artificial intelligence, and 

• Tele-mammography. 
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13. COMPUTER AIDED DETECTION 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The use of computer aided detection methods to support radiologists during the screening 
process to identify abnormal breast tissue was not discussed in the 2009 ANZHSN report. 

13.1. Computer-aided detection in breast cancer screening 

FFDM images need to be examined by radiologists to detect small changes that could be 
indicative of a malignancy. This can result in misdiagnosis due to human error by visual fatigue. 
The human error rate when reading mammograms is reported to be between 10-30% or missed 
cancers. Errors may result in overdiagnosis leading to unnecessary biopsies or other procedures 
and unwarranted health expenditure and anxiety (Azavedo, Zackrisson, Mejàre & Heibert 
Arnlind, 2012).  

To maintain high sensitivity and specificity (i.e., high cancer detection and low false-positive 
rates), many countries including Australia recommend double reading (i.e., that the breast 
images are reviewed by two specially trained radiologists). While prospective double reading of 
screening mammograms has been shown to increase cancer detection rates (Dromain et al., 
2012 and Horsch, Hapfelmeier & Elter, 2011), a screening program may not always be able to 
resource this due to the number of radiologists required.  

To offset these resourcing implications, sophisticated computerised methods have been 
developed to support radiologists to interpret medical images by enhancing the images and 
providing in-depth analysis of visual details. Two main schemes are available:  

 computer-aided detection (CADe), and  1.

 computer-aided diagnosis (CADx).  2.

CADe focuses on finding the location of abnormalities. CADx is targeted to characterisation (i.e., 
malignancy versus benignity). Although some algorithms address both stages simultaneously, 
most researchers look at them as separate processes. For the purposes of the horizon scan, 
studies that focused only on characterisation (i.e., the diagnosis of breast cancer) are excluded.  

The programs used in CADe separate suspicious regions that may contain masses from 
background parenchymal tissues. They then identify and mark areas that the software identifies 
as abnormal breast tissue. CADe programs are not intended to be the sole method for analysing 
images. Rather, they are designed to alert the radiologist to possible suspicious areas. A 
radiologist (or other reader) must interpret and decide how to act upon each mark (accept or 
dismiss). 

Standard design of a mammographic CADe system 

The standard design of a mammographic CADe system for breast cancer detection has four 
stages:  

 image pre-processing 1.

 segmentation of suspicious mass region 2.

 feature extraction  3.
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 classification.  4.

Pre-processing of mammograms is done to improve the contrast of mammograms, which assists 
in further stages of the detection pipeline. This step also involves denoising the images, which is 
necessary as the noise created by random fluctuations contained in radiological images make 
the detection of small and subtle structures more difficult. Segmenting the breast region from 
pectoral muscle and surrounding regions is then carried out to make it easier to extract the 
suspicious tissues from breast segments. After the segmentation process, the desired features 
(such as texture, shape, gradient and intensity) are extracted from the region of interest. These 
features are used to classify the suspicious regions as normal or abnormal tissues (benign or 
malignant).  

13.2. Summary of key findings 

• CADe, applied as a complementary technology to mammography interpretation, 
prompts the reader to lesions on the mammogram. The reader then needs to decide 
whether to recall CADe-prompted findings.  

• Non-randomised studies have shown that CADe improves the sensitivity of a single 
reader, with an incremental cancer detection rate ranging between 1 and 19%. A 
limitation of CADe is that it also increases screening recall rate through a decrease in 
specificity. Studies have found that double-reading produces the same results than that 
for single reading with CADe, without the increased rate of recall. In terms of detecting 
lesion characteristics, good results have been observed for the detection of breast 
cancers presenting as microcalcifications. However, the rate of detection for masses 
and architectural distortions is not so positive. 

• To expand the clinical value of CADe in the detection of breast cancer, several studies 
have focused on improving technical stages of the CADe process. Promising results 
have been observed, particularly regarding the application of deep learning systems, 
but further work needs to be done. While CADe could substitute the human second 
reader in the future, depending on the first reader’s experience, without improvements 
in its effectiveness (eg, a decrease in recall rate), CADe is unlikely to be a cost-effective 
alternative to double reading for mammography screening. 

• Current research is not sufficient to be able to identify whether CADe is able to reduce 
deaths due to breast cancer through early detection. 

• CADe has not been incorporated into any national breast screening programs, nor are 
there any national position statements that have been released on its use in breast 
cancer screening for asymptomatic women 

13.3. Literature search results (number of studies returned) 

From the literature search a total of 145 abstracts of peer reviewed articles were identified that 
related to CADe. Abstract contents were then reviewed and 78 were excluded because they 
indicated studying CADe in a symptomatic population, for diagnostic or treatment purposes, or 
were studying the use of CADe for other imaging modalities. 10 other articles were subsequently 
excluded because they could not be located or were dissertations. A total of 57 articles were 
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reviewed to answer the key research questions relating to the use of CADe in breast cancer 
screening. 

Systematic and/or literature reviews 

7 systematic or literature reviews were identified (Agrawal, Vasta & Singh, 2014; Ayer, 
Chen & Burnside, 2013; Azavedo, Zackrisson, Mejàre & Heibert Arnlind, 2012; Dromain 
et al., 2013; Ganesan et al., 2013; Houssami & Ciatto, 2011; and Karssemeijer, 2010). 

RCTs 

None identified 

Prospective studies 

6 prospective studies were identified (Bargalló et al., 2014; Dromain et al., 2012; Fenton 
et al., 2011; James et al., 2010; Sanchez-Gómez et al., 2011; and Sohns et al., 2010). 

Retrospective studies 

44 retrospective studies were identified (Al-Najdawi, Biltawi & Tedmori, 2015; Bargalló 
et al., 2013; Bessa et al., 2014; Beura, Majhi, Dash and Roy, 2015; Choi & Ro, 2012; Chu, 
Min, Liu & Lu, 2015; Cole et al., 2014; Cole et al., 2012; de Sampaio, Silva, de Paiva & 
Gattass, 2015; de Sampaio, Silva, de Paiva, Gattass & Diniz, 2011; Dhahbi, Barhoumi & 
Zagrouba, 2015; Dheeba, Singh & Selvi, 2014; Dhungel, Carneiro & Bradley, 2017; Dong 
et al., 2015; Guerriero et al., 2011; Hong & Sohn, 2010; Horsch, Hapfelmeier & Elter, 
2011; Hu, Li & Gao, 2011; Hupse et al., 2013; Jen & Yu, 2015; Kendall & Flynn, 2014; Kim 
et al., 2010; Kooi et al., 2017; Lehman et al., 2015; Lesniak, Hupse, Blanc, Karssemeijer & 
Szekely, 2012; Liu, Xu, Liu & Feng, 2011; Mac Parthalian, Jensen, Shen & Zwiggelaar, 
2010; Mordang et al., 2017; Mordang, Gubern-Merida, den Heeten & Karssemeijer, 2016; 
Mughal, Sharif & Muhammad, 2017; Neto, Silva, Paiva & Gattass, 2017; Povyakalo, 
Alberdi, Strigini & Ayton, 2013; Qiu et al., 2015; Raghavendra et al., 2016; Rangayyan, 
Banik & Desautels, 2010; Rangayyan, Banik & Desautels, 2013; Sadaf, Crystal, Scaranelo 
& Helbich, 2011; Samulski et al., 2010; Singh & Urooi, 2016; Skaane, Kshirsagar, Hofvind, 
Jahr & Castellino, 2012; Velikova, Lucas, Samulski & Karssemeijer, 2013; Wang et al., 
2016; Wang, Lederman, Tan, Wang & Zheng, 2010; and Wang et al., 2017).  

Grey literature 

A search of the U.S. National Library of Medicine ClinicalTrials.gov website for “breast 
cancer” and “computer aided detection” identified 9 related clinical trials, with two 
studies related to CADe for breast cancer screening purposes:  

• ‘Computer-Aided Breast Cancer Detection in Women Undergoing Screening 
Mammography’ sponsored by the Aberdeen Royal Infirmary, Scotland, United 
Kingdom. The study, which is due to be completed in October 2018, seeks to 
examine how well computer-aided breast cancer detection works in women 
undergoing screening mammography. 

• ‘The Diagnostic Efficacy of Computer-Aided Detection (CAD) in Full-Field Digital 
Mammography (FFDM)- A Prospective Study’ at the National Taiwan University 
Hospital, Taiwan. The study, which is due to be completed in 2018, seeks to 

http://www.clinicaltrials.gov/


 

 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 132 

 

evaluate whether CADe in FFDM can facilitate the detection rate of breast cancer 
on mammography compared with FFDM without CADe. 

13.4. Study findings and discussion 

13.4.1. What stage of development or trial is this innovation at?  

Most of the literature on computer-aided detection for mammography comprises studies looking 
at technical aspects, such as improvements to software. As they explore the emerging 
technological developments in CADe, these studies will be examined in the section looking at the 
potential clinical value of CADe in future years. The following section looks at those studies that 
focused on the current use of this reading strategy.  

Sensitivity 

Systematic reviews  

Four systematic reviews discussed the rate of sensitivity. Houssami & Ciatto (2011) and 
Dromain et al. (2012) reported a moderate increase in sensitivity with the use of CADe. Both 
reviews referred to studies reporting an increase in the true-positive rate ranging from 1.3% to 
19.5% (based on the respective findings of four papers).  

In their review, Dromain et al. (2012) noted that increases in the rate of sensitivity were 
consistent with those for doubling-reading by humans (a finding also reported by Azavedo et al. 
(2012)). CADe was said to be easier to implement and cheaper to use than double reading. 
Dromain further suggested that there was a clear benefit in using CADe for less experienced or 
low volume readers. They referred to papers that observed the use of CADe by junior 
radiologists improved sensitivity from 61.9% to 84.6%, compared to a slight improvement from 
76.9% to 84.6 for experienced radiologists. The use of CAD by low-volume readers led to an 
increase in recall and cancer detection rate of approximately 19%.  

In one of the largest studies comparing the performance of digital screening mammography with 
or without CADe, Lehman et al. (2015) found no evidence that CADe improved screening 
mammography performance: in fact, the opposite was observed. They compared the accuracy of 
FFDM interpreted with (n = 495,818) and without (n = 129,807) CADe from 2003 through 2009 
in 323,973 women. Mammography sensitivity was 85.3% with and 87.3% without the use of 
CADe. Commenting on the difference in their results and those from earlier studies supporting 
the efficacy of CADe, Lehman et al. (2015) said this was due to inherent biases in the methods 
previously used to examine the impact of CADe. The bulk of the early studies were laboratory 
based and measured the ability of CADe programs to mark cancers on selected mammograms. 
The reported “high sensitivities” of CADe from these studies did not translate to higher cancer 
detection in clinical practice. Lehman concluded that CADe offered no additional benefit to 
women in terms of breast cancer detection compared with double reading. Nonetheless, they did 
consider that CAD had some practical applications such as improving workflow.  

Lesion characteristics: Dromain et al. (2012) also looked at different lesion types. In terms of 
detecting breast cancers presenting as microcalcifications, the level of sensitivity ranged from 
86% to 99%. They observed that CADe seemed to increase the efficiency and confidence level of 
radiologists searching for subtle microcalcifications. The detection of masses was not as reliable, 
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with sensitivity ranging from 83.0% to 90.0%. This was due to the varying size, shape and 
appearance of masses, and varying tissue density as such masses often share characteristic 
features with normal parenchymal tissues. Sensitivity was also found to be less for masses with 
architectural distortions than for spiculation. The review noted that CADe had limited value in 
the detection of amorphous calcifications with a sensitivity of only 57.0% being reported.  

Retrospective observational studies 

Seven studies have evaluated the impact of CADe in a clinical setting using historical control 
methodology. The rate of sensitivity in these studies (which are set out in CAD Table 1, below) 
ranged from 76.8% to 98.8%. The authors of these papers concluded that the use of CADe in the 
interpretation of mammograms could lead to improvements in early cancer detection.  
CAD Table 1. Summary of sensitivity in studies evaluating the impact of CADe in clinical settings 

Study Year Base1 Quoted number of 
people in the study 

Sensitivity 

Neto, Silva, Paiva & 
Gattass 

2017 DDSM 621 97.5% 

Wang et al. 2017 DDSM 322 92.26 

Beura, Majhi, Dash, 
and Roy 

2015 DDSM 200 98.8% 

Dong et al.  2015 DDSM 200 94.0% 

de Sampaio et al.  2015 DDSM 1049 93.0% 

Hu, Li, & Gao 2011 MIAS 170 91.3% 

Liu, Xu, Liu & Feng 2011 DDSM 125 76.8% 

1 DDSM: Digital Database for Screening Mammograms; MIAS: Mammographic Image Analysis Society  

Three other studies compared single human reading with single reading plus CADe. Fenton et al. 
(2011) found a non-statistical increase in sensitivity after its introduction at 90 Breast Cancer 
Surveillance Consortium (BCSC) facilities from 79.7% to 83.1% (3-12 months post-CADe) and 
80.1% (over 12 months post CADe) (p=.62). From these results, they concluded that CADe was 
not associated with improvement in detection rate or prognostic characteristics in invasive 
breast cancer. In a later study, Cole et al. (2012) found that the CADe systems tested were able to 
detect significantly more cancers than were found on initial screening by the original radiologist 
for both digital and film-screen mammograms. Their results showed an increase in sensitivity in 
digital and film-screen mammograms by 31% and 28% respectively. For each system, sensitivity 
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was also higher for digital than for film-screen mammography, and the sensitivity of the CADe 
systems were not influenced by lesion characteristics (eg, histology, lesion size, lesion type) or 
subject characteristics (age, breast density, menopausal status). In contrast, Sanchez Gómez et 
al. (2011) found that CADe only increased cancer detection compared to mammography 
screening by 0.1%. 

One study compared single reading done by a radiologist assisted by CADe with double reading. 
Bargalló et al. (2013) found that cancer detection rate improved by 16.2% using a single reader 
assisted by CADe. In a separate article on the same study, Bargalló et al. (2014) reported that 
specialised breast radiologists performed better than general radiologists. 

Stand-alone CADe sensitivity assessment is an important part in determining whether CADe 
should be incorporated into clinical assessments. These studies have shown that CADe improves 
the sensitivity of a single human reader and has the potential to outperform double reading, 
suggesting that the use of such technology in the interpretation of FFDM could lead to improved 
breast cancer detection.  

Lesion characteristics: The impact of lesion type on sensitivity was explored by several studies. 
Retrospectively applying CADe to 127 cases, Sadaf, Crystal, Scaranelo & Helbich (2011) found a 
statistical difference (p<.05) in CAD detection of breast cancers that appeared as 
microcalcifications compared to other mammographic features (microcalcifications (100%), 
masses (88.7%) and architectural distortions (71.4%)). They also found that sensitivity 
increased as the size of the lesion got bigger (1-10 mm (84.4%), 11-20mm (93.2%) and ≥20mm 
(95.6%)). The overall sensitivity was 90.6%.  

Bargalló et al. (2013) also evaluated CADe performance on mammographic features of breast 
cancer but limited their study to very small (equal to or less than 1 cm) invasive breast cancers. 
CADe showed an overall sensitivity of 86.7%. Breaking down their results by mammographic 
features, they found that CADe works better for detecting microcalcifications (100%) than for 
masses (85.5%). Architectural distortions were the most difficult mammographic pattern to be 
detected (57.1%).  

Other studies also reported findings of 100% sensitivity for microcalcifications (Mohamed et al., 
2014), and lower figures for architectural distortion, which was found to be 80.0% in two 
studies by Rangayyan, Banik & Desautels (2010) and Rangayyan, Banik & Desautels (2013).  

These studies indicate that the use of a CADe system will help a radiologist as a second reader to 
identify microcalcifications but it’s ability to detect masses and architectural distortion is less 
clear.  

Prospective trials 

Four prospective trials were identified from the literature search that discussed the rate of 
sensitivity. In their study, Skaane, Kshirsagar, Hofvind, Jahr & Castellino (2012) examined 
baseline mammograms that were obtained over a fourteen-month period as part of the 
Norwegian national screening program. Of the 23,923 women who underwent screening during 
this period, 208 were found to have cancer, of which 104 were diagnosed at baseline screening 
and 104 diagnosed as subsequent cancers (44 interval cancers and 60 next screening round 
cancers). CADe correctly marked 94% of mammograms of the screen-detected cancers. Skaane 
and colleagues concluded that CADe had the potential to increase cancer detection by up to 16%. 
They acknowledged, however, that this figure represented a likely scenario of the increase in 



 

 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 135 

 

cancer detection. The retrospective design with standalone analysis meant that it was not 
possible to estimate how many correct (true positive) CADe marks would have been overruled 
by radiologists reading the image.  

The two other trials were conducted by Sadaf et al. (2010) and Kim et al. (2010) who reported 
sensitivities of 91.0% (n = 127) and 96.2% (n = 130) respectively.  

Lesion characteristics: James et al. (2010) evaluated the mammographic features of breast 
cancer that favour lesion detection with single reading and CADe or with double reading. Of the 
28,204 women who participated in the study, 227 were found to have breast cancer. Most 
cancers were picked up by both reading regimens; however, some were detected with one 
reading regimen and missed with the other. While parenchymal deformities were more likely to 
be picked up by double reading, more asymmetric densities were identified with single reading 
and CADe. James and colleagues found no difference in the ability of either reading regimen to 
identify masses or microcalcifications, although noted that the detection rate for masses (87%) 
was not as high as that for microcalcifications (100%). They also observed that lesion size had 
no effect on the performance of either reading regime.  

Kim et al. (2010)also reported findings of 100% sensitivity for microcalcifications and 78.3% for 
cancers manifested as masses. 

These trials confirmed the findings from the systematic reviews about the usefulness of CADe 
systems in breast cancer detection, particularly the detection of microcalcifications. 

Interval cancer rate 

Prospective reviews 

Skaane et al. (2012) examined the impact that CADe could have on the reduction of the rate of 
interval breast cancer rates. In their study, CADe correctly marked 93% of the subsequent 
cancers retrospectively categorised as actionable. They concluded that CADe had the potential to 
reduce the number of interval cancers by up to 20%. However, they recognised that the 
retrospective design of their study would have caused expectancy (hindsight) bias as the 
radiologist would be aware of a higher than usual possibility of cancer.  

Positive predictive value (PPV) 

PPV1 (verified attributable cancers per number of women recalled from screening) 

Only one study reported on PPV1. Fenton et al. (2011) reported a decrease in PPV1 after CADe 
was introduced at BCSC facilities from 4.3% to 3.7% (3-12 months post-CADe) and 3.6% (over 
12 months post CADe). 

PPV2 (cancers diagnosed per the number of biopsies recommended) 

No studies reported on PPV2. 

PPV3 (cancers diagnosed per the number of biopsies performed) 

Only one prospective study reported on PPV3. Sanchez Gómez et al. (2011) found that the rate of 
percutaneous biopsy was unchanged by CADe (20.2%).  

Specificity 

Systematic reviews  
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Three systematic reviews discussed the effect that CADe had on specificity. Dromain et al. 
(2012) reported that CAD-assisted reading was associated with a reduction in specificity 
compare to mammography. They noted this reduction may cause radiologists to underestimate 
and disregard the positive features of CADe. Karssemeijer (2010) shared the concern that the 
reduction in specificity would cause radiologists to lose confidence in CADe. Both authors 
considered that this highlighted the need to train radiologists properly in the use of CADe. 
However, Lehman et al. (2015) observed only minor differences in specificity between 
mammograms interrupted using CADe and those interrupted visually.  

Retrospective observational studies 

Analysing the records of 684,956 women who received more than 1.6 million FFDM from 1998 
to 2006, Fenton et al. (2011) reported a non-significant decrease in specificity after its 
introduction at BCSC facilities from 91.9% to 91.5% (3-12 months post-CAD) and 91.4% (over 
12 months post CAD) (p=.62). Given its scale, this study offered important insights into the 
effectiveness of CADe when used in real-world practice. First, the results suggested CADe had 
limited impact on breast cancer detection. This caused Fenton and colleagues to express concern 
that CADe offered little or no impact on breast cancer mortality, which may depend on earlier 
detection of invasive breast cancer. Their findings were consistent with a meta-analysis that 
suggested CADe caused a modest increase in recall rates with little or no impact on cancer 
detection rates. 

Using screening mammograms from 68 patients, Bargalló et al. (2013) also found that specificity 
of CADe was low (26% with 1.76 false marks per case). In their view, this also represented a 
major drawback for the technology.  

False positive recall rate 

False positive recall rates are a significant concern as women who are recalled for further 
investigation often experience high levels of anxiety, along with the inconvenience and expense 
of attending a further appointment that bring no health benefit to the woman. Many studies 
discussed below found that the use of CADe for mammography was accompanied by an increase 
in recall rate due to the high number of false positive marks generated. This could lead to:  

(a)  an increase in the number of women being unnecessarily referred for a clinical follow-
up 

(b)  an increase in interpretation time of the mammogram, and  

(c)  a loss in confidence in the CADe system, especially when locations are marked that are 
clearly not suspicious.  

For instance, in their systematic review of new imaging methods in breast screening, Houssami 
& Ciatto (2011) referred to two previous studies that observed that CADe caused additional 
recall of between 6% to 35% of women. They observed that although CADe systems were useful 
to avoid perceptual oversights of the radiologist, they were not yet suitable to serve as an 
independent reader. 

This conclusion contrasts with the results found in three other studies. While Bargalló et al. 
(2014) found a modest increase of 3.3% in recall rate, lower figures were reported by Sanchez 
Gómez et al. (2011) and Guerriero et al. (2011), who observed recall rates of only 0.4% and 
0.5% respectively.  
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Three studies explored whether algorithms could be designed to decrease the rate of false 
positive marks. Mordang et al. (2017) focused on obvious false positives generated by 
microcalcification detection algorithms. They added an additional step in the detection method 
in which dedicated classifiers learn to recognise the patterns of obvious false-positive subtypes 
that occur more frequently. The insertion of this step enabled their system to detect between 
73% and 83% of false positives, compared to only 68% detected by standard CADe systems. 
Comparing their method to a conventional approach, they found that the number of false 
positives decreased significantly (p=.0002).  

In an earlier study, Mordang, Gubern-Merida, den Heeten & Karssemeijer (2016) noted that 
breast arterial calcifications were one of the most frequent false positives marked by CADe 
systems. They demonstrated that by using dedicated algorithms to detect and remove breast 
arterial calcifications, the performance of CADe systems could be improved. The number of false 
positives per case that were marked by the CADe system reduced by 29% on average. In their 
view, using dedicated algorithms to detect and remove breast arterial calcifications improved 
the performance of CADe systems. 

Lesniak, Hupse, Blanc, Karssemeijer & Szekely (2012) used support vector machine 
classification to reduce the rate of false positive marks. Using a database of 2,516 film 
mammography examinations and 73 input features, they were able to train the classifiers and 
evaluate their performance. They found that using an SVM-based CADe significantly reduced the 
number of false positive marks, enabling their system to outperform conventional approaches 
for breast cancer CADe.  

13.4.2. What are their considered potential clinical value in five years? In 10 years? 

Several studies have focused on technical aspects looking at whether improvements could be 
made to software associated with specific stages of the mammographic CADe pipeline. The 
authors of these studies felt that the incorporation of these technical developments into the 
CADe system would improve the rate of breast cancer detection as well as decease the recall rate 
associated with CADe. These improvements would increase the clinical value of CADe in the 
detection of breast cancer. The following section examines these studies and discusses their 
potential clinical value.  

Systematic reviews 

Horsch et al. (2011) noted that many of the studies that sought to improve the mammographic 
CADe system were performed on selected materials enriched with cancer cases so their value as 
a true screening situation is questionable. This raised concerns about the quality of such studies. 
Analysing 59 publications presenting 106 evaluation studies (none of which fell within the time 
range of the current horizon scan), they noted that when assessing the performance of the 
mammographic CADe systems and their components (eg, segmentation or feature extraction 
algorithms), the selection of test cases (or images) and the choice of evaluation methods was 
particularly critical. Horsch et al. observed that the results obtained in several studies were 
affected by the selection of images in the mammography databases which was not standardised 
and prevented verification by other researchers. A substantial amount of bias was also caused by 
the researchers’ decisions around study design, such as using small, often non-reproducible, 
sub-selections of test cases. This issue was compounded by the evaluation methods being 
employed, such as sampling and statistical models for solving the classification task. This led to 
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overestimation of measures like the correct classification rate. In their view, these studies 
should be approached with caution. 

Kooi et al. (2017) expressed similar concerns about the work on CADe systems noting that many 
studies only tested small data sets, which were not always shared, and the proposed algorithms 
were difficult to compare. Another complication was that breast cancer has two main 
manifestations (micro-calcifications and masses). Separate systems have been developed for 
each which made comparison difficult to do.  

Retrospective observational studies 

Pre-processing 

The purpose of the pre-processing stage of the 
CADe pipeline is to enlarge the intensity difference 
between objects and background to produce 
reliable representations of breast tissue. The 
methods used to manipulate mammogram images 
can be divided into two main categories:  

(1)  Histogram Equalisation techniques; and  

(2)  Morphological Enhancement techniques. 

Al-Najdawi, Biltawi, & Tedmori (2015) tested different combinations of contrast enhancement 
and noise reduction algorithms on a dataset of 1,300 mammogram images to see whether they 
could better enhance the visual details for radiologists and facilitate the segmentation process. A 
combination of image enhancing algorithms that included Contrast-Limited Adaptive Histogram 
equalisation and Median filtering produced a sensitivity of 94.1% and 81.4% for CC and MLO 
images respectively. 

Segmentation 

Distinguishing the suspicious region from its surrounding areas is an important step in 
analysing mammogram images. This stage segments mammogram images into several non-
overlapping regions, from which regions of interest can be identified and a suspicious mass 
located. The suspicious area is an area that is brighter than its surroundings, has almost uniform 
density, has a regular shape with varying size, and has fuzzy boundaries.  

Different techniques to improve the quality of the segmentation process have been developed. 
Chu, Min, Liu & Lu (2015) created a CADe scheme using morphological enhancement combined 
with simple linear iterative clustering (SLIC). They found that morphological enhancement was 
effective in suppressing the interferences of the breast tissue and structural noises surrounding 
the mass regions. By enhancing the contrast between masses and the surrounding tissue, 
morphological enhancement enables the clustering method SLIC to achieve a segmentation 
performance, based on simple features such as intensity and spatial distance. The proposed 
CADe system achieved a satisfactory sensitivity (ranging from 75.9% to 77.9%) while 
maintaining a relatively low false positive rate (the overall rate dropped from between 8 to 11 
images at initial detection to 1 to 2 images per case).  

De Sampaio, Silva, de Paiva, Gattass & Diniz (2011) used cellular neural networks to segment 
mammography images and generate regions of interest. Their algorithm combined shape 

Histogram Equalisation 

Enhances the contrast of the image by reducing the 
effect of over brightness or over darkness to 
improve the visual appearance of images. 

Morphological Enhancement 

Improves and enhances the entire image with low 
contrast, only if that image contains a single object 
or of there is no apparent change between the object 
and the background.  
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features (eccentricity, circularity, circular density disproportion circular and density) and 
texture features (Ripley’s K function, indexes of Moran and Grey) to describe the region of 
interest. The extracted features were classified as mass and non-mass using support vector 
machine. This method produced 80.0% sensitivity, 85.6% specificity, with average rate of false 
positive per image and false negatives per image of 0.84 and 0.2 respectively.  

Hong & Sohn (2010) developed an algorithm to detect and segment regions of interest in 
mammograms using a topographic approach. They observed that topographic representation 
was largely invariant to brightness and contrast, and therefore provided a robust and efficient 
representation of the characterisation of mammographic features. As the algorithm achieved 
100% detection rate (with 3.8 false positives per image), they suggested that the proposed 
method would be an effective prompting tool to assist radiologists in breast screen detection.  

Improving the quality of the segmentation process has enabled researchers to observe lower 
rates of false positives per image. Continued development in this area should further reduce this.   

Detection of the pectoral muscle 

Pectoral muscles also appear in the mammogram, which may be misinterpreted as masses due 
to their high intensity values. To reduce the rate of false positives, algorithms generally involve 
removing the pectoral muscles or a segmentation step to suppress the pectoral muscle region 
prior to the detection of symptoms. For instance, Mughal, Sharif, & Muhammad (2017) 
developed a bi-model processing algorithm for the detection of breast cancer that removed 
pectoral muscles from the test images. Testing the algorithm on two datasets of 322 images and 
400 images respectively using different classifiers, they reported performances of 91.0% to 
98.5% sensitivity, 88.0% to 97.0% specificity and 88.5% to 96.9% accuracy. To reduce potential 
bias, they applied the algorithm to a different dataset of 322 images reporting performances of 
88.5% to 98.2% sensitivity, 88.1 to 97.0% specificity and 89.0% to 97.5% accuracy.  

Agrawal, Vasta & Singh (2014) developed a different algorithm that automatically detected 
masses from mammograms using saliency-based segmentation even in the presence of pectoral 
muscles. Testing the model on 322 mammograms (207 are normal and 115 show signs of breast 
cancer), their algorithm out-performed seven other commonly-used algorithms in reducing false 
positives while detecting masses in digital mammograms with improved sensitivity. They 
reported an Area under Curve (AUC) of 0.891 compared to an AUC of 0.601 to 0.787 for the 
other algorithms.  

Successful detection of the pectoral muscles is crucial for meaningful diagnosis. The 
improvements that have been made to this aspect of the CADe pipeline will aid the subsequent 
classification of abnormal tissue mass and improve breast cancer detection.  

Feature extraction 

Texture is a commonly used feature in the analysis and interpretation of images. Texture is 
characterised by a set of local statistical properties of pixel intensities (Mohamed et al., 2014)). 
Noting that feature extraction is a key issue in designing a CADe system, many studies have 
proposed new feature extraction methods.  

For instance, Singh & Urooi (2016) developed a system that used polar complex exponential 
transform (PCET) moments as texture descriptors. Testing the system on 200 database images, 
they found that the system attained a sensitivity of 98.2% and specificity of 97.2%. This 
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compared favourably with other studies with reported sensitivities ranging from 90.1% to 
100.0%, and specificities ranging from 88.1% to 100.0%.  

Several studies have noted the incremental computation cost of detection for large numbers of 
features and have explored reducing the feature subset. For instance, Dhahbi, Barhoumi & 
Zagrouba (2015) concluded that the selection of a reduced feature subset increased the accuracy 
of the CADe system. Exploring a new feature extraction method for mammogram description 
based on curvelets transform and moment theory, they found that curvelet moments yield an 
accuracy of 91.27% with 10 features for abnormality detection.  

Kendall & Flynn (2014) demonstrated a smaller feature size was even more accurate. Using 
online datasets, they generated forty-one features which were then tested singly and in 
combinations of two or three. They achieved sensitivities as high as 98% with a specificity of 
66% using a k-nearest neighbour classifier (described below) and sensitivity as high as 100% 
with a specificity of 64% using a naïve Bayesian classifier. In their view, using a small number of 
features ensured that the CADe system did not become over-trained.  

Choi & Ro (2012) developed a new approach for extracting texture features for the 
characterisation of mammographic masses. They found that by combining texture patterns 
extracted from both core and margin regions, the algorithm achieved a sensitivity of 77.9% at 
2.0 false-positives per image. While previous studies on the same database reported a sensitivity 
of 72-81%, FPs was higher ranging from 2.0 to 4.5 per image. The authors concluded that their 
approach was an effective solution for reducing FP signals in CADe schemes.  

Taking a different approach, Kooi et al. (2017) decided against choosing an optimal concise set 
of features and instead developed a deep learning model in the form of a convolutional neural 
network to read the mammograms. They found that since CNN learns from data and did not 
have to rely on domain experts, the system outperformed more conventional CADe systems.  

Feature extraction is a key issue in designing a CADe system as the feature set must be compact 
and discriminative to improve system speed and accuracy. The work carried out in this area has 
identified efficient and effective ways to extract a reduced set of discriminative features for 
breast cancer. 

Classification 

Once the features related to masses 
are extracted and selected, the 
features are inputted into a classifier 
to classify the suspicious regions as 
normal or abnormal tissues (benign 
or malignant). Classifiers such as 
Artificial Neural Network (ANN), the 
k-Nearest Neighbour (k-NN) and 
Support Vector Machine (SVM) are 
commonly used in mass classification.  

Raghavendra et al. (2016) employed 
k-NN in their CADe obtaining mean 

Artificial neural network 

An artificial neural network (ANN) is a computational model based on 
the structure and functions of biological neural networks. Information 
that flows through the network affects the structure of the ANN because 
a neural network changes - or learns - based on that input and output. 

k-Nearest Neighbour 

K-Nearest Neighbour (k-NN) is one of the simplest classification 
methods. It is a non-parametric method used for classification and 
regression in that no parameters are estimated. Instead the proximity of 
neighbouring input observations in the training set and their 
corresponding output values are used to predict the class of objects in 
the validation data set.  

Support vector machine 

Support vector machine (SVM)  are supervised learning models with 
associated learning algorithms that analyse data used for classification 
and regression analysis. SVM is a binary linear classifier that predicts for 
each input data which of two possible classes comprise the input.  

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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accuracy, sensitivity and specificity of 98.7%, 99.3% and 98.3%. 

Two studies focused specifically on the use of the ANN classifier in mammography 
interpretation and decision making.  Ayer, Chen & Burnside (2013) noted that ANN had many 
desirable properties that made it well suited for breast cancer detection. ANN was capable of 
“learning” complicated patterns from data that is difficult for humans to identify. It could also 
overcome ambiguous and missing data. There were two different ways ANN was used to aid 
mammography interpretation: first, by applying the classifier directly to the region of interest 
and, second, by learning from the features extracted from the pre-processed images.  

Ayer looked at a range of studies and identified several benefits and limitations of using ANN for 
classification. The benefits included the high computational power and practical use of ANN. The 
limitations were:  

• lack of a comprehensive assessment of the discrimination accuracy 

• overfitting (which occurs when the network overlearns and mimics the training dataset 
but performs poorly when presented to an external dataset), and  

• complexity issues.  

They concluded, however, that these limitations could be carefully overcome for the successful 
application of ANNs in mammography interpretation. 

In their study, Wang, Lederman, Tan, Wang & Zheng (2010) found that this classifier achieved 
sensitivity of  90.0%, which was encouraging, but its results for specificity (42.0%) was less than 
ideal. 

Four studies were identified that examined the impact of other classification systems. Jen & Yu 
(2015) developed a two-stage classifier to detect abnormal mammograms. Their algorithm 
yielded sensitivities of 88% and 86% on two respective datasets. They also obtained a specificity 
of 84%. These results compared favourably with three other automated mass detection systems, 
which reported sensitivities ranging from 62% to 95.2%.  

The method employed by Dong et al. (2015) for classification used chain code to indicate the 
regions of interest (ROIs). Its internal structure was enhanced by rough set. The convolution 
vector fields were used to extract 32 features of the ROIs, which were used in training and 
classification, where the performance of the classifiers Random Forest, SVM, genetic SVM, PSO, 
PSO-SVM and decision trees are compared. The best performance was obtained using the 
classifier Random Forest and produced a sensitivity of 94.8%.  

The algorithm created by Al-Najdawi et al. (2015) classified masses into four categories, 
producing a sensitivity of 96.2% and specificity of 94.4% for mass classification.  

Mac Parthalian, Jensen, Shen & Zwiggelaar (2010) developed a new nearest neighbour classifier 
based on fuzzy-rough sets, which uses the nearest neighbours to construct lower and upper 
approximations of decision classes and classifies test instances based on their membership to 
these approximations. Applying their method to two publicly accessible datasets containing 322 
and 832 mammograms respectively, they obtained accuracies of 91.4% and 89.2% for the two 
datasets. These rates were like those observed by Ganesan et al. (2013), who noted from the 
studies he reviewed that the best results were only around 90%. In his view, this was not 
sufficient enough for implementation in clinical trials.  

Deep learning 
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While the studies described above have contributed to the discourse on how CADe systems 
classify suspicious regions, they all employ conventional computer vision technologies based 
upon detection of hand-crafted imaging features. The discriminative power of the classifiers 
described above is therefore limited due to the computational costs of identifying definitive 
features for subset characterisation and optimisation. Existing systems fail to explicitly 
represent the working principles and knowledge of human experts: expert radiologists normally 
compare image parts and different images of the breasts to each other (that is, they interpret 
potentially suspicious regions of the breasts in the context of all other available image 
information) (Velikova, Lucas, Samulski, & Karssemeijer, 2013). Researchers have investigated 
ways in incorporate such principles into CADe systems, using machine learning systems.  

One form of machine learning is deep learning, which is a neural network with multiple hidden 
layers that enhance the recognition accuracy of images, thereby increasing its versatility for 
capturing representative features. Qiu et al. (2015) developed and tested a short-term risk 
assessment model based on deep learning method on a training set with 200 cases and a testing 
set with 70 cases. The deep learning CADe system focused on feature detection and risk 
prediction. The proposed CAD-based risk model yielded a PPV of 69.2% and an NPV of 74.2%, 
with a total prediction accuracy of 71.4%. In their view, the use of deep learning technology in 
risk predicting schemes would lead to improved performance in detecting early abnormal 
symptoms from the negative mammograms. They acknowledged, however, that this work is still 
in its infancy. 

Dheeba, Singh & Selvi (2014) proposed a methodology for the detection of masses using 
Participle Swarm Optimised Wavelet Neural Network (PSOWNN). After extracting texture 
energy measures from the mammograms, the algorithm classified the suspicious regions using a 
pattern classifier. Applying their method to a database of 216 mammograms, they found that the 
proposed algorithm produced a sensitivity of 94.2% and specificity of 92.1% for mass 
classification. 

Dhungel, Carneiro & Bradley (2017) used a deep learning classifier that was pre-trained with a 
regression to hand-crafted feature values and fine-tuned based on the annotations of the breast 
mass classification dataset. They achieved a sensitivity of 98.0% and specificity of 70.0% for 
mass detection.  

Wang et al. (2016) compared the effectiveness of the deep learning model they developed on 
different lesion types. They achieved a discriminative accuracy of 87.3% for microcalcifications 
but only 61.3% for masses. They concluded that for large datasets deep learning was superior to 
standard methods for the discrimination of microcalcifications.  

Machine learning techniques have shown the ability to select complex, previously unimagined 
features from images. Their application within CADe has the potential to significantly improve 
the classification of lesions and thereby reduce the rate of false-positives generated by 
conventional CADe systems.  

13.4.3. What cost and safety findings have been reported? 

No studies reporting on the safety of CADe were identified. 

One study commented directly on the cost of using CADe systems to detect breast cancer. 
Guerriero et al. (2011) investigated whether the use of single reader with CADe is more cost-
effective than double reading. They found that the use of CADe increased costs compared to 
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double reading because of the cost of the CAD equipment, staff training, and the higher 
assessment cost associated with CAD are greater than the savings in reading costs. The 
introduction of single reader with CADe, in place of double reading, would produce an additional 
cost of £227 and £253 per 1,000 women screened in high and average screening volume areas 
respectively. In low screening volume areas, the high cost of purchasing and maintaining the 
equipment would result in an additional cost of £590 per 1,000 women screened. They 
concluded that without improvements in the effectiveness of CADe (i.e., a decrease in recall 
rate), this reading strategy is unlikely to be a cost-effective alternative to double reading for 
mammography screening.  

Reader performance: One of the biggest impacts on cost is reader performance. Two systematic 
reviews discussed the issue of reader performance. Azavedo et al. (2012) observed that the lack 
of trained radiologists remains a problem even if CADe is used. In their view, new generations of 
radiologists need to be secured. Besides, being able to discuss uncertain cases with an 
experienced colleague is essential for both educational purposes and to avoid too many false 
positives/false negatives. They noted that when working with CADe, a single radiologist would 
have to make the final decision on whether to recall the woman for further work-up. This 
decision may depend on a single CADe mark in an area where the radiologist did not react 
initially. In their view, a radiologist should only use CADe if they were highly experienced.  

Karssemeijer (2010) saw reader performance as an opportunity to promote the use of CADe. He 
noted that radiologists understand the high negative predictive value of CADe. They know the 
likelihood that a cancer is present becomes lower when CADe does not mark the region and 
higher when it does, especially if marked in multiple views. He considered that CADe use would 
lead to better decisions on average. However, Azavedo et al. (2012) noted that mammography 
screening involves high throughput, which places high demands on smooth screening work-
flows. 

Five studies also looked at the performance of radiologists and other technicians who read 
mammogram images. These studies found that the main disadvantage of CADe systems was the 
high rate of false-positive marks. This led in great extent to an elongation of mammogram 
reading time because the radiologist could be distracted by many CADe marks. The resulting 
increase to total reading time was observed by Hupse R et al. (2013) who found that the use of 
CAD lengthened the time that radiologists took to read the images by approximately 10 seconds 
per image.  

Reader performance is effected by the experience of the radiologist. Sohns, Angic, Sossalla, 
Konietschke & Obenauer, (2010) found that CADe elongates reading time of new and less 
experienced radiologists. They observed no significant difference between the reading time of 
radiologists experienced with CADe systems.  

In terms of reader performance, Povyakalo, Alberdi, Strigini & Ayton (2013) found that CADe 
helped readers with less discriminating ability but hindered more experienced readers. They 
considered that such differential effects were clinically significant and therefore needed to be 
factored into the future development of CADe systems and protocols. 

Cole et al. (2014) examined the performance of radiologists with or without CADe by asking 
them to rescreen mammograms that they had previously inspected visually. They wanted to 
know whether increased familiarity with CADe systems changed their decisions. They found that 
sensitivity and specificity differences between the two-different reading strategies were not 
significantly different. They concluded that radiologists rarely changed their diagnostic 
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decisions after the addition of CADe. The application of CADe did not have a statistically 
significant effect on radiologist performance in interpreting digital mammograms.  

Reader performance was also looked at by Hupse et al. (2013). They developed software that 
kept CADe marks and their associated suspiciousness scores hidden unless their location was 
queried by the radiologist. Comparing their findings with traditional CADe prompts used in 
current clinical practices, they found that the difference in reader performance was significant 
(91% for the interactive mode and 75% for commercial systems). In a separate article about the 
same study, Hupse explained that the interactive use of CADe was more effective than the 
standard use of CADe because CADe was aimed at the prevention of perceptual oversights. An 
early study also found an increase in detection performance with interactive CADe (Samulski et 
al. (2010)).  

Taking a slightly different approach to breast cancer screening, Bessa et al. (2014) developed a 
pre-CADe system that identified normal mammograms instead of detecting suspicious ones. In 
their view, automatically detecting normal cases and screening them out of the process would 
alleviate the human effort involved in the CADe process, giving radiologists more time to focus 
on more ambiguous cases. Applying the system to 17,900 mammograms, they correctly 
identified 20% of the normal mammograms: a result that is like other more complex 
approaches.  

13.4.4. Does this technology reduce deaths due to breast cancer through early detection? 

Two major shortcomings in study design apply to CADe as a reading strategy. One is survival 
rate, which is the most important outcome in mammography screening. None of the studies 
investigated the survival rates between a single mammographic reading by one breast 
radiologist plus CADe or double reading involving two breast radiologists and CADe. The other 
shortcoming is incomplete follow-up, which may lead to sensitivity being overestimated 
(Azavedo et al., 2012).  

13.4.5. Does this innovation show higher sensitivity and specificity for women with dense 
breasts and women who have breast surgery/augmentation compared to single 
human view? 

Systematic reviews 

One systematic review looked at the implications of breast density on CADe performance. 
Dromain et al. (2013) noted that the performance of CADe depended on background breast 
density. They concluded that while overall breast density did not appear to exert an impact on 
CADe detection of breast cancer, there was a decrease in sensitivity among cancers that 
manifested as masses (89.0% for non-dense breasts compared to only 83% for dense breasts). 
The review also noted that CADe was found to have a greater sensitivity for detecting ILC and 
DCIS, rather than invasive ductal carcinoma.  

Retrospective reviews 

Five retrospective reviews commented on the implications of breast density on CADe 
performance.  

In their study comparing the use of CADe with double reading, James et al. (2010) observed 
breast density had some bearing on breast cancer detection. Double reading by humans 
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performed better than single reading with CADe in women with denser background patterns. 
However, Sadaf et al. (2011) found there were no statistical differences (p>0.1) in CAD detection 
of cancers in dense breasts (89.8%) versus non-dense breasts (91.2%). Bargalló et al. (2013) 
also observed that background density did not affect detection. However, they noted that most 
of their patients had non-dense breast and small lesions were easier to depict in non-dense 
breasts. Consequently, no definitive conclusions could be drawn on this subject from this study.  

The work of de Sampaio, Silva, de Paiva & Gattass (2015) presented a computational method to 
aid in the detection of masses based on the density of the breast. In the segmentation step, they 
used a micro genetic algorithm to create a texture proximity mask and select regions suspected 
of containing lesion. After reducing the number of false positives, the algorithm chose the 
suspicious regions that generated the best training models. They recorded a sensitivity of 89.1% 
for dense breasts (which was 4.9% lower than non-dense breasts).  

Neto et al. (2017) developed a computational method using particle swarm optimisation to 
detect masses in dense breasts, obtaining 97.5% sensitivity, 92.3% specificity, 94.8% accuracy 
and 0.38 false positives per image. In their view, the proposed methodology could assist in 
detection of masses, providing the radiologist with a second opinion in the early detection of 
breast cancer in women with dense breasts.  

13.4.6. Has the technology been implemented into a national screening program?  If so, 
what outcomes have been achieved?  What implementation issues arose? 

CADe has not been incorporated into any national screening programs. 

13.4.7. Has a national position statement been published about the technology, and if so, 
what is the position?  Is there consensus in position statements? 

No national position statements on the use of CADe in breast cancer screening were identified in 
the literature search.  
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14. ARTIFICIAL INTELLIGENCE  

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The use of artificial intelligence software to interpret mammograms to predict malignant versus 
benign tumours, and thereby aid in biopsy decisions, was not discussed in the 2009 ANZHSN 
report. 

14.1. What does AI mean in breast cancer screening? 

To improve interpretive accuracy, sophisticated computerised systems have been developed to 
support radiologists during the screening process to interpret medical images by enhancing the 
images and providing in-depth analysis of visual details. While these systems use AI software to 
assist feature extraction and classify the suspicious regions as normal or abnormal tissues, CADe 
still requires human intervention for interpreting the final results (Ganesan et al., 2013). It is 
therefore likely to be impacted by false-prompting of its human reader (Houssami, Lee, Buist & 
Tao, 2017).  

With recent advances in computer processing capabilities, the rapid growth of digital capture 
and storage of health data, and cloud-based storage capabilities, researchers have identified the 
potential of AI to perform image interpretation on its own and, therefore, improve accuracy in 
clinical medicine (Trister, Buist & Lee, 2017). One rapidly growing field of AI is machine learning 
(ML), which allows computers to learn without explicit programming through automated 
extraction and analysis of complex data. ML can build complex statistical models from large 
datasets to potentially identify new variables and combinations of variables that can predict 
patient outcomes. Two newer ML techniques are: 

1. deep learning (a class of learning algorithms that stacks a set of non-linear operations 
to extract features and explore transformations from training data) and 

2. reinforcement learning (this technique allows ML to tackle a problem involving 
sequential decisions and determine the ideal actions within a specific context that 
maximises rewards and performance) 

These ML techniques have shown the ability to select complex, previously unimagined features 
from images.  

Researchers are currently developing AI systems to interpret mammograms (and other imaging 
technologies) as a stand-alone system and avoid the need for a radiologist to confirm the 
presence of malignancy. These systems seek to predict malignant vs. benign tumours to aid in 
biopsy decisions. The technique involves scanning large datasets and cross-checking them with 
results from mammogram X-rays and clinical reports. The software extracts information from 
clinical reports and is run through a risk assessment model. The software is developed through 
machine learning, based on high-risk lesions. The model incorporates patterns among many 
different data elements that include demographics, family history, past biopsies, and pathology 
reports. 

AI systems are still being refined and are not currently applied in breast screening clinical 
practice in Australia.  
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14.2. Summary of key findings 

• The use of AI in breast cancer screening of asymptomatic women is still in its early 
stages but is closely linked to developments in CAD. While promising, machine learning 
is in its infancy with respect to demonstrating its utility in cancer screening. 

• There is currently no indication of the timeframe in which the full clinical potential of 
AI for breast cancer detection will be realised; however, preliminary results for AI are 
promising.  

• Current research is not sufficient to be able to identify whether the use of AI in 
interpretation is able to reduce deaths due to breast cancer through early detection.  

• AI has not been incorporated into any national screening programs, nor are there any 
national position statements that have been released on their use in breast cancer 
screening for asymptomatic women. 

14.3. Literature search results (number of studies returned) 

From the literature search a total of 54 abstracts of peer reviewed articles were identified that 
related to AI software to interpret mammograms. Abstract contents were then reviewed, and 32 
articles were excluded because they studied AI for diagnostic or treatment purposes as opposed 
to a screening modality or were related to the use of AI systems in CADe (which are discussed in 
the previous section). Eight other articles were subsequently excluded because they could not be 
located or were dissertations. A total of 14 articles were reviewed to answer the key research 
questions relating to the use of AI as a breast cancer screening tool.  

Systematic and/or literature reviews 

Four systematic and/or literature reviews were identified (Cabitza, Rasoini & Gensini, 
2017; Houssami, Silva, de Paiva & Gattass, 2017; Trister, Buist & Lee, 2017; Ganesan et 
al., 2013) 

RCTs 

None identified 

Prospective studies 

None identified 

Retrospective studies 

Ten retrospective studies were identified (Becker et al., 2017; Carneiro & Bradley, 2017; 
Dhungel, Carneiro & Bradley, 2017; Neto, Silva, Paiva & Gattass, 2017; Teare, Fishman, 
Benzaquen, Toledano & Elnekave, 2017; Guo et al., 2016; Kallenberg et al., 2016; de 
Sampaio, Silva, de Paiva & Gattass, 2015; Ertosun & Rubin, 2015; Beck et al., 2011) 

Grey literature 

None identified 
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14.4. Study findings and discussion 

14.4.1. What stage of development or trial is this innovation at?  

Systematic reviews 

Two systematic reviews discussed the current use of AI in breast cancer detection. 

Houssami et al. (2017) and Trister et al. (2017) both noted that conditions are ideal for AI 
solutions to transform medical imaging because of existing capabilities in computer vision, 
automated digital image feature analysis, large stores of digital images through picture archiving 
and communication systems, linked electronic medical records, and the binary outcome of 
imaging-based screening tests like mammography.  

Trister et al. (2017) noted that digital images can be analysed at the individual pixel level, 
converting single mammographic images into millions of individual variables. Given a gold 
standard to learn from, computer algorithms can cluster these pixel-level variables and identify 
novel image features associated with clinically relevant breast cancers. This meant, machine 
learning can combine image-level, patient-level and tumour-level variables to develop complex 
algorithms that could be better than human breast cancer screening accuracy. 

Trister et al. (2017) noted that the ability of machine learning to identify high-risk breast 
cancers was shown by the C-Path (Computational Pathway) tool, an automated pathologist 
algorithm. Rather than focusing on known histologic features, C-Path uses unsupervised 
machine learning and automated image processing to identify thousands of novel imaging 
features on digital pathology specimens. These novel image-based features were then used to 
predict patient survival, with performance that surpassed that of community pathologists.  

The C-Path system was developed by Beck et al. (2011), who applied the tool to microscopic 
images from two cohorts of breast cancer patients (n1 = 248 and n2 = 328). The prognostic score 
generated by their system was strongly associated with overall survival in both cohorts (P ≤ 
0.001). One important lesson from this study was the need for unsupervised learning to identify 
previously undiscovered imaging predictors, as opposed to simply relying on known associates. 
Another lesson was that extremely large, high-quality, harmonised, unbiased and generalisable 
datasets were needed to train and validate algorithms.  

Seven retrospective studies explored the application of AI in breast cancer detection. One study 
evaluated the diagnostic accuracy of multipurpose image analysis software based on deep 
learning with artificial neural networks (dANNs) for the detection of breast cancer. Using 
mammograms from 3,228 women, Becker et al. (2017) trained the neural network on 143 
control cases from the healthy population and then tested 143 patients with known breast 
cancer. The performance of the trained neural network was also trained on an external dataset 
of 35 healthy patients and 35 with breast cancer. Three radiologists (3, 5 and 10 years of 
experience) evaluated the test data set. In a second step, the neural network was trained with all 
cases from January to September and tested on cases from October to December 2012. The 
radiologists also evaluated this second test dataset. In the first step, the AUC of the trained 
neural network was 0.81 and comparable on the test cases 0.79 (p=.63). One of the radiologists 
showed almost equal performance (0.83, p=.63) whereas two were slightly better (0.90 and 
0.94, p<.016). In the second step, performance of the neural network (0.82) was not significantly 
different from the human performance (0.77-0.87, p>.016): however, radiologists had lower 
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sensitivity and greater specificity than the neural network. Their results demonstrated that 
dANNs were able to detect cancer in mammograms with similar accuracy to radiologists, even in 
a screening-like cohort with low breast cancer prevalence. 

The diagnostic accuracy achieved in the Becker study was comparable to other published deep 
learning models (Kallenberg et al., 2016 and Ertosun & Rubin, 2015). While the Kallenberg study 
made use of a specialised dANNs for breast cancer detection, Ertosun compared different 
generic dANNs. Slightly higher results were obtained by Carneiro & Bradley (2017), Dhungel, 
Carneiro & Bradley (2017) and Guo et al. (2016), who obtained AUCs of 0.90, 0.90 and 0.97 
respectively. In terms of distinguishing between malignant and benign masses, Dhungel et al. 
(2017) reported a sensitivity of 98.0% and specificity of 70.0%. It should be noted that the 
Carneiro study was the only one of these five studies not to use a large dataset to train their 
neural network, which is problematic as only a few high-quality datasets are publicly available. 
In addition, none of the four studies offered a direct comparison to a radiologist’s performance.  

In a recent study, Teare, Fishman, Benzaquen, Toledano & Elnekave (2017) explained that CADe 
systems traditionally used in breast cancer detection deploy conventional computer vision 
technologies based upon detection of hand-crafted imaging features broadly categorised into 
masses or microcalcifications. In contrast, machine learning methods were based upon feature 
discovery within samples of ground truth validated images. While ML had made substantial 
advances in feature recognition, fundamental differences in data acquisition and content have 
limited the transferability of ML image algorithms to the domain of radiology.  

They presented a ML based mammographic malignancy detection algorithm that applied a novel 
false-colour enhancement technique and analytics architecture that was capable of discerning 
malignancy with a sensitivity of 91.0% and a specificity of 80.0%. Their algorithm achieved 
stand-alone accuracy like that reported for expert radiologists.  

In an interesting development, Houssami et al. (2017) mentioned that a crowdsourcing 
challenge is currently underway that asks participants to develop predictive algorithms that 
reduce false-positive mammograms, while maintaining or improving cancer detection. The goal 
of the Digital Mammography DREAM Challenge is to enhance the predictive accuracy of 
algorithms so that they can be used in routine clinical practice (i.e., to develop an algorithm that 
matches the performance of expert radiologists). The challenge has brought together over 120 
independent teams of data experts from across the globe. Participating teams used hundreds of 
thousands of de-identified mammograms and clinical trial data to create algorithms that can 
determine a woman’s cancer status in the 12 months following a mammography screening. The 
first stage of the challenge, where teams were asked to develop their algorithms, has been 
completed. In Houssami and colleague’s opinion, the next stage of the challenge (the 
‘collaborative’ phase) where the best teams work together to improve the final algorithm holds 
promise for improved accuracy of AI systems. Some papers that were submitted as part of the 
algorithm development stage are available on-line.16 

                                                             

16 See Ribl, Horvath, Unger, Pollner, Csabai, Detecting and classifying lesions in mammograms with Deep 
Learning, available at https://arxiv.org/pdf/1707.08401.pdf (accessed 22 February 2018) and Shen, L., 
End-to-end Training for Whole Image Breast Cancer Diagnosis using An All Convolutional Design, available 
at https://arxiv.org/ftp/arxiv/papers/1708/1708.09427.pdf (accessed 22 February 2018). 

https://arxiv.org/pdf/1707.08401.pdf
https://arxiv.org/ftp/arxiv/papers/1708/1708.09427.pdf
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14.4.2. What are their considered potential clinical value in five years? In 10 years? 

While several authors discussed the possible future use of the AI systems they are developing, 
only three talked about the potential clinical value of AI. 

Houssami et al. (2017) noted that existing research into the capability of AI in mammography 
screening has mainly focused on interpretive accuracy with the goal of reducing false positives. 
In their view, there remains much opportunity to explore the role of AI in breast cancer 
screening, for instance to improve the detection of more aggressive forms of breast cancer or 
faster growing lesions. The technology should not be limited to the detection of cancers ‘missed’ 
at human screen-reading (with the aim of reducing the frequency of interval cancers). 

Trister et al. (2017) noted that machine learning was in its infancy with respect to 
demonstrating its utility in cancer screening. There is no guarantee that effects to merge clinical, 
genomic, biological and image data will lead to improved cancer screening outcomes. In reaching 
this conclusion, they referred to the fact that CADe, which incorporates AI techniques into its 
systems, has shown no improvements in interpretative accuracy since it was first employed in 
screening. 

Houssami et al. (2017) raised issues relevant to the application of AI in breast cancer screening 
that warranted consideration. These included the social and ethical concerns and implications 
inherent in entrusting cancer detection to an AI model, and the possibility of unintended 
consequences. For instance, Cabitza, Rasoini & Gensini (2017) noted that an over-reliance on the 
capabilities of automation was starting to be observed which was affecting the ability of 
clinicians to make informed decisions based on detectable signs, symptoms and available data. 
They referred to a study of 50 mammogram readers that found a 14% decrease in diagnostic 
sensitivity when presented with challenging images marked by CADe. They felt that further 
research was needed to better understand whether the overreliance on AI systems that could 
out-perform or perform as well as human readers could also cause a subtle loss in self-
confidence and affect the willingness of radiologists to provide a definitive interpretation or 
diagnosis.  

Houssami et al. (2017) felt these issues needed to be fully explored to provide an understanding 
of societal perspectives, and to define an ethical-legal framework for the potential application of 
AI models in breast cancer screening. This would also help ensure that the purpose for which AI 
models are developed is acceptable to all stakeholders. 

14.4.3. What cost and safety findings have been reported? 

No studies commented on the cost effectiveness of using artificial intelligence systems to detect 
breast cancer, or the safety implications of this technology. 

14.4.4. Does this technology reduce deaths due to breast cancer through early detection? 

The use of AI software for breast cancer screening is still in its infancy and, accordingly, no 
studies have been identified that discuss its ability to reduce deaths through early detection.  
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14.4.5. Does this innovation show higher sensitivity and specificity for women with dense 
breast and women who have breast surgery/augmentation compared to single 
human view? 

No studies have been identified that discussed whether AI operating as a stand-alone system 
showed higher sensitivity and specificity for women with dense breasts. However, two studies 
examining the use of machine learning as part of CADe systems commented on the its 
effectiveness in detecting masses in dense breasts. In these studies, de Sampaio, Silva, de Paiva & 
Gattass (2015) and Neto, Silva, Paiva & Gattass (2017) reported a sensitivity of 89.1 and 97.5% 
respectively for women with dense breasts. Neto and colleagues claimed that the computational 
method they devised worked best on women with dense breasts (97.5% sensitivity and 92.3% 
specificity). Consequently, the development of future AI systems is likely to have significant 
application for screening women with dense breasts.  

14.4.6. Has the technology been implemented into a national screening program?  If so, 
what outcomes have been achieved?  What implementation issues arose? 

The use of AI software has not been incorporated into any national screening programs. 

14.4.7. Has a national position statement been published about the technology, and if so, 
what is the position?  Is there consensus in position statements? 

No national position statements on the use of AI software in breast cancer screening were 
identified in the literature search. 
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15. TELE-MAMMOGRAPHY 

Findings from the Australia and New Zealand Horizon Scanning Network’s 2009 report: 
New and emerging technologies for breast cancer detection 

The use of tele-mammography for the early detection of breast cancer in asymptomatic women 
was not covered in the 2009 report. 

15.1. Tele-mammography as a reading/interpreting technology  

Tele-mammography is the real-time, off-site interpretation of digital mammograms through 
wireless, fibre-optic or wire-based networks between the site where the mammogram is taken, 
usually a remote area, and a centre where mammograms are interpreted. This process should 
not be confused with tele-radiology, where an image acquired in one location is transmitted to 
another location so that they can be viewed and interpreted for screening or diagnostic 
purposes by a radiologist at a later point in time. 

The primary purpose of tele-mammography is to improve access to mammography for 
underserved populations (such as those living in isolated rural areas to those in low-income 
inner-city neighbourhoods) and thereby increase the rate of early breast cancer detection. A 
digital system can be fitted into a mobile unit for visiting areas where there is a lack of 
radiologists or mammography units (Bhateja et al., 2014). There are several advantages of this 
process including the ability for radiologists to cover multiple sites, better consultation with the 
patient or between physicians, less time to diagnosis and consequently reduced period of patient 
anxiety. The real-time evaluation of mammogram images allows women from rural areas to 
obtain their results before they need to travel back to their homes, particularly those living in 
areas that have more limited communication capabilities.  

The process of tele-mammography is based on an essential triad: an image sending station, a 
transmission network, and a receiving image station that has a high-resolution display monitor 
that can be used for clinical purposes. Specialised computer programs to transmit digital images 
to remote locations without losing information content are needed, as is adequate bandwidth to 
accommodate the timely transmission of images. Tele-mammography also requires the 
standardisation of image characteristics – such as image resolution, bit-depth and intensity 
response – so that images may be read at the remote workstation (Patil & Ahmed, 2014).  

For optimal effect, images should be displayed simultaneously on workstations at the two sites 
with on-screen display of dual cursors controlled by the user at each site. This dual display, 
combined with multi-media videoconference link, facilitates: 

• real-time tele-management of screening mammography examinations between the 
technician at the image acquisition site and the radiologist at the image interpretation 
site, and  

• real-time tele-consultation between physicians at two sites (Patil & Ahmed, 2014).  

For tele-mammography to be clinically successful, the interpretation of the transmitted images 
must be done as rapidly as conventional FFDM (i.e., without reduction in throughput). There are 
some costs associated with tele-mammography as the rapid transmission of digital images 
requires the use of high-priced infrastructure (eg, satellite transmission and high volume, high-
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speed networks). Other issues include the feasibility of sending large data sets, network and 
storage needs, and protecting patient privacy. 

15.2. Summary of key findings  

• The use of tele-mammography appears to be at least moderately widespread, and 
seemingly has a range of benefits, including the ability to provide services to remote 
areas, and better utilisation of radiologists’ time. 

• Studies have found that there is no significant difference in screening outcomes 
between traditional mammography and tele-mammography technologies (such as 
digital cameras) and visualisation devices (such as LCD screens) are suitable for 
performing tele-mammography. 

• It is not clear whether tele-mammography has been incorporated into any national 
screening programs, or whether its use has been determined at sub-national level. 

15.3. Literature search results (number of studies returned) 

From the literature search, a total of 170 abstracts of peer reviewed articles were identified that 
related to the electronic transmission of breast screen images. Abstract contents were then 
reviewed, and 166 articles were excluded because they related to tele-radiology, were only 
tangentially related to tele-mammography, or had little or no application to breast screening. 
Three other articles were identified through manual searches meaning that a total of seven 
articles were reviewed to answer the key research questions in relation to the use of tele-
mammography for breast cancer screening.  

Systematic and/or literature reviews 

 Two studies: Bashshur et al., 2016; McClung et al., 2014 

RCTs 

None identified 

Prospective studies 

 None identified  

Retrospective studies 

Four studies: Fruehwald-Pallamar et al., 2013; Patil & Ahmed, 2014; Salazar et al., 2016; 
Salazar et al., 2016 (JACR); Salazar et al., 2014.  

Grey literature 

 Bhateja et al., 2014 
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15.4. Study findings and discussion 

15.4.1. What stage of development or trial is the new technology at?  

In respect of teleradiology, overall, it was estimated that 40 per cent of radiology practices in the 
United States performed ‘outside readings’ in 2007, which accounted for 11% of their total 
workload and 4% of the total workload of all radiologists (Bashshur et al., 2016). No statistics 
are presented in the literature about the prevalence of tele-mammography.  

There appears to be consensus in the literature that, performed correctly, tele-mammography 
can produce results that are not significantly different from mammograms read by an on-site 
radiologist. For example, Fruehwald-Pallamar et al. (2013) found that Contrast Detail 
Mammography (CDMAM) images were identical before and after transmission, and within the 
limiting values for CDMAM image technology as specified in European guidelines. They found 
that uncompressed digital mammograms can be transmitted to different institutions with 
different workstations, without loss of information. They also found that the transmission 
process does not significantly influence image quality, lesion detection, or BIRADS assessment.  

Similarly, Salazar et al. (2016) noted that computed radiography and FFDM were useful in the 
implementation of tele-mammography, with several studies reporting no significant differences 
between film-screen mammography and digital modalities. Fruehwald-Pallamar et al. (2013) 
argued that state-of-the-art equipment, frequent calibration and inspection, as well as quality 
assurance by a medical physicist were necessary conditions for obtaining mammograms of good 
quality. 

In addition to these techniques, Salazar et al. (2014) and Salazar et al. (2016) found that lower-
cost image capturing devices could also produce good results. Salazar et al. (2016) said that 
digital images from a digital camera and specialised scanner were a good-quality low-cost 
alternative to computed radiology examinations, even for heterogeneously dense and extremely 
dense breasts (BIRADS 3-4), and for amorphous calcifications (albeit with better performance 
observed for a specialised scanner than the digital camera). Overall, Salazar et al. (2014) and 
Salazar et al. (2016) concluded that that there were no significant differences between the 
interpretation of film-screen or CR mammography examinations and soft copy examinations 
produced by a specialised film digitiser or a digital camera. Salazar et al. (2014) also found that 
consumer-grade colour displays (eg, LCD and LED screens) were suitable for detecting 
malignant or benign mammograms in tele-mammography screening programs. 

When tele-mammography was initially attempted, difficulties arose because of technical 
limitations, mainly due to limited transmission capabilities and problems with displaying the 
images. However, Fruehwald-Pallamar et al. (20130 noted that tele-mammography was now 
viable due to the availability of digital mammography systems and picture archiving and 
communication systems (PACS) with large storage capacity, and data links with extremely high 
transmission rates (although network reliability remains an important consideration). In 
contrast, Bhateja et al. (2014) said that several challenges and tele-mammography constraints 
continued to exist for the execution of tele-mammography. Firstly, image quality needed to be 
appropriately maintained during communication, meaning that frequent calibration of tele-
mammography equipment may be required. Secondly, in many cases the mammograms could 
not be verified onsite due to issues such as positioning, artefacts, compression, noises and 
contrast, and were thus not suitable for direct transmission. Thirdly, there were integration and 
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interoperability constraints in providing an interface between the mammography units and 
communication/network hardware for transmission (Bhateja et al., 2014).  

Patil & Ahmed (2014) noted that due to the large size of the digital images, a high bandwidth 
was required for the image to be transmitted. They noted that ISDN (Integrated Services Digital 
Network) systems, while affordable, did not possess the bandwidth sufficient to transmit digital 
images, especially in rural locations with weak signal environment. On the other hand, ATM 
(Asynchronous Transfer Mode) charges were high but suitable for tele-mammography use. 

BSA is currently undertaking a trial of tele-mammography through the Remote Radiology 
Project. This project seeks to contribute to the provision of research into the use of remote 
radiology as a service delivery model within the BSA program. No publications have come out of 
this work so far. 

15.4.2. What is its considered potential clinical value in five years? In ten years? 

The identified literature did not discuss timeframes in which potential clinical value may be 
realised. However, Salazar et al. (2016) noted that tele-mammography, particularly services that 
utilised cheaper screening technology, may help to provide widespread screening services in 
underserved areas.  

Bhateja et al. (2014) set out an approach which, they argued, would address many of the 
limitations in current tele-mammography services. They found that interoperability of the 
devices involved in tele-mammography services would be improved by incorporating the IEEE 
21451-x family of standards (which are standards for smart transducer interfaces for sensors 
and actuators on networked devices). They also found that adoption of the nonlinear polynomial 
filters significantly improved the performance of the tele-mammography model in respect of 
visualisation of suspicious regions in test mammograms.  

15.4.3. What cost and safety findings have been reported? 

As outlined above, Salazar et al. (2016) noted that a $450 camera (plus $400 for a support 
system and a lightbox) and a $15,000 specialist digitiser did not produce significantly different 
screening outcomes than more expensive tele-mammography equipment, suggesting that 
significant savings could be made, or the reach of tele-mammography services significantly 
extended, with no significant impacts on safety. In assessing the benefits of teleradiology more 
generally, the Canada Health Infoway Diagnostics Imaging Benefits Evaluation Report found that 
PACS had reduced turnaround time of radiology reports by an average of 41%, and increased 
radiologist productivity by 27% (McClung et al., 2014).  

15.4.4. Does this technology reduce deaths due to breast cancer through early detection? 

Current research does not explicitly identify whether tele-mammography is able to reduce 
deaths due to breast cancer through early detection of cancer in asymptomatic women. 
However, studies such as Salazar et al. (2016) did refer to the potential of tele-mammography to 
provide widespread screening services in underserved areas.  



 

 HORIZON SCAN: POSSIBLE FUTURES FOR BREAST SCREENING 156 

 

15.4.5. Does this innovation show higher sensitivity and specificity for women with dense 
breast and women who have breast surgery/augmentation compared to single 
human view? 

No studies have been identified that discussed whether AI operating as a stand-alone system 
showed higher sensitivity and specificity for women with dense breasts. However, one study 
was identified that evaluated the reliability of four alternatives for tele-mammography – 
computed radiology, printed film, a film digitiser and a digital camera – in terms of 
interpretation agreement when using the BIRADS lexicon. In their study published in the Journal 
of the American College of Radiology, Salazar et al. (2016) found a very high inter-device 
agreement on management recommendations among the evaluated devices based on the 
BIRADS final assessment categories. This suggested the possibility of using less expensive 
devices in tele-mammographic screening programs, which would enable high-quality screening 
services to be provided to underserved populations at low cost.  

15.4.6. Has this technology been implemented into a national screening program? If so, 
what outcomes have been achieved? What implementation issues arose? 

As noted above, it appears from the literature that tele-mammography services are at least 
moderately widespread. Despite this, it is not clear whether this technology has been 
implemented as part of national screening programs, or whether it has been implemented as 
part of sub-national decision-making.  

15.4.7. Has a national position statement been published about this innovation, and if so, 
what is the position? Is there consensus in position statements? 

No national position statements on the use of tele-mammography were identified in the 
literature search. However, broader statements on teleradiology have been issued in several 
areas, including the United States and Europe. The first American College of Radiology Standard 
for Teleradiology was issued in 1994, was updated several times before expiry in 2007. In 
addition, the ACR and the European Society of Radiology recently released white papers on 
teleradiology practice, with the ACR stipulating that the Food and Drug Administration must 
approve teleradiological equipment, and that image data integrity must be maintained at all 
system levels and times for both US and international teleradiology (Bashshur et al., 2016).  
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