Genetics, Epigenetics and Obesity

Peter Molloy
CSIRO Health and Biosecurity
Genetics and Obesity Risk

- Mutations in a small number of genes are associated with severe forms of obesity - rare

- More generally – based on twin, family and population studies:
 - Inherited contribution to Body Mass Index (risk of developing obesity) is estimated at 40-70%
 - Large genetic studies have identified common variants (alleles) in more than 100 genes that contribute to a person’s risk of high BMI (similar for diabetes/cardiovascular)
 - Effects of individual genetic variants are small
 - Top 100 genes only contribute about 4% to BMI-risk
 - Summed variants across the genome:
 - Up to 20% of risk explained

Genetics and Obesity Risk (2)

- Top 97 BMI risk alleles derived from meta-analysis of ~340,000 individuals

- In separate group of 8,164 individuals, mean BMI determined for groups of individuals carrying different numbers of risk alleles (right)

- 3.3 kg/m² difference between those carrying the least and most risk alleles

- Measurable contribution, but currently impractical to apply clinically

“Epi” genome

Closed: genes off

Open: genes on

- Set of marks that are added to DNA or associated proteins
- Marks allow or prevent genes being switched on
- Allows expression of specific genes in each cell type
- Epigenome is “re-set’ in the early embryo and during formation of sperm and eggs
- Inherited through cell division
- Effected by environment and modulated in disease

• The epigenome is the interface between the environment and the genome
Epigenome in health and disease throughout life

- **Peri-conception**
- **In utero, neonatal**
- **Childhood/adolescence**
- **Adult development**
- **Aging**

Preconception and early developmental environment/metabolism contributes to epigenomic factors that predispose to disease.

Diseases may manifest later in life due to early developmental exposure.
In utero and early life environment effects on health role of epigenetics

- Smoking, alcohol
- Hormones (steroids, VitD etc.)
- Signalling pathways
- Nutrition
 - Macronutrients
 - Micronutrients

In utero, neonatal

Childhood/adolescence

Adult development

Aging

Early developmental environment/metabolism contributes to epigenome changes and “Tuning” of epigenetic programs

Diseases may manifest later in life due to early developmental exposure
Early life (in utero) impacts on the health outcomes and the epigenome

Spurred by animal studies and human examples:

Dutch “Hunger Winter” (1944/45)

Population northern Netherlands subjected to starvation conditions near the end of World War 2

Tobi E et al. (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nature Communications 5: 5592

Mid to later life

Metabolic disorders
Cardiovascular
Schizophrenia

Epigenetic differences

DNA methylation measured at ~59 years

- Health impacts and epigenetic differences seen in those in first trimester during famine.
- Challenging to determine if epigenetic changes cause or effect
Epigenome data and its application

quantifying patterns of DNA methylation

Reflecting the past

Epigenome

Projecting future outcomes?

Site-specific changes in DNA methylation correlate with many prior exposures

Difficult to disentangle cause and effect

Diet
Smoking
Stress
Alcohol...
(Genetics)

Cross sectional

Obesity
type 2 diabetes
lipids
Cardiovascular...
+many others

Obesity
Metabolic disorders
Cardiovascular
Cancer...

Two following examples where epigenetic marks associate with future outcomes
Risk of newly incident type 2 diabetes within five years (adults, 62 gene signature)

<table>
<thead>
<tr>
<th></th>
<th>Controls/cases</th>
<th>P</th>
<th>P trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (BMI 18.5 - 24.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>144/29</td>
<td>3.85 x 10^{-1}</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>141/32</td>
<td>4.97 x 10^{-1}</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>130/43</td>
<td>2.61 x 10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>106/69</td>
<td>1.89 x 10^{-7}</td>
<td></td>
</tr>
<tr>
<td>Overweight (BMI 25 – 29.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>129/27</td>
<td>9.50 x 10^{-1}</td>
<td>5.66 x 10^{-19}</td>
</tr>
<tr>
<td>Q2</td>
<td>185/78</td>
<td>7.70 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>169/115</td>
<td>9.00 x 10^{-8}</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>301/321</td>
<td>4.00 x 10^{-16}</td>
<td></td>
</tr>
<tr>
<td>Obese (BMI >30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>27/17</td>
<td>2.50 x 10^{-3}</td>
<td>4.19 x 10^{-7}</td>
</tr>
<tr>
<td>Q2</td>
<td>50/28</td>
<td>5.20 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>59/61</td>
<td>5.10 x 10^{-10}</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>149/255</td>
<td>7.90 x 10^{-22}</td>
<td></td>
</tr>
</tbody>
</table>

Subjects at baseline:
South Asian
HbA1c <6%
Fasting glucose < 6mmol l^{-1}

P-interaction = 0.56

- 62 gene epigenetic signature can predict risk of developing T2D
- Both on European and Indian cohorts
- Strong association with risk even after correcting for adiposity & glycaemic measures
- Applicable across weight range

P significance relative to Normal BMI, Q1 epigenetic signature

P trend significance of trend within each BMI group

Interaction P value
- interaction between adiposity and DNA methylation score in risk of T2D

Epigenetic mark at birth associated with child BMI at 5 yrs

Newborns with epigenetic mark, twice as likely to be classified as overweight or obese at 5 years.
Summary

Reflecting the past

Projecting future outcomes?

- Clear genetic contribution to obesity and associated metabolic disorders – but difficult to use clinically at present
- Epigenetic data can integrate genetic and environmental inputs – early days, but showing some promise in predicting health outcomes
- Both data types are identifying targets for pharmacological intervention