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Appendix  A:  Development  of  epidemic 

mathematical transmission model 
An epidemic mathematical transmission model of HIV and HCV among Australian IDUs was 

formulated to dynamically describe the change in the number of people in the population over 

time according to disease states. The model considered heterogeneity in injecting behaviour 

reported by the Illicit Drug Reporting System (IDRS) [56-62]: IDUs who did not inject in the 

last month, injected weekly or less, injected more than weekly, injected once daily, injected 

two to three times per day, and injected more than three times per day. The frequency of 

sharing injecting equipment, number of people with whom equipment is shared, number of 

times each syringe is used before it is disposed, and frequency with which syringes and other 

injecting equipment (e.g. spoons, tourniquets, etc) are cleaned before reuse, and the efficacy 

of cleaning equipment contaminated with HIV or HCV were all factored into the model’s 

calculation of the per capita rate of IDUs becoming infected. The model also tracked the 

entry of new injectors into the population and the rate of ceasing injecting behaviour, while 

also matching the assumed dynamic number of IDUs in the population over time. Drug-

related, disease-related, and background death rates were also included. All parameter values 

were estimated based on exhaustive searching of the relevant literature and available data 

from Australian reports and databases (see Table B.1). 

Data were also stratified by each Australian state and territory as well as Aboriginal and 

Torres Strait Islander populations. The numbers of IDUs in each jurisdiction were included, 

based on various indicators, along with the dynamic number of sterile syringes distributed by 

NSPs to these populations over time. We considered different syringe coverage rates within 

the IDU populations. 

Force of infection and analysis of ‘static’ incidence 

Based on these factors, we formulated a mathematical expression for the ‘force of infection’, 

which refers to the dynamic rate at which susceptible individuals become infected. The force 

of infection used in this analysis was developed by first considering a static and 

homogeneous population of N IDUs and was then adapted to include heterogeneous and 

dynamic features. In a homogenous population, if each IDU injects an average of n times per 

year, a proportion, s, of IDUs share their syringes with others in a proportion, q, of their 

injections, and sharing occurs in groups of m people, then the total number of ‘sharing 
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events’ in the population per year is Nnsq
m

. The total number of expected transmissions will 

be this number multiplied by the average number of transmissions per ‘sharing event’. 

If the prevalence in the population is P, then the probability of r infected people in a sharing 

group of size m is (1 )r m rm
P P

r
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

, using standard binomial theory. If the group members 

inject using the shared syringe in random order, then an average of 
1

m r
r
−
+

uninfected people 

will inject before the first infected person (and between each infected person). Therefore, in 

each sharing event an average of 
2

1 1
m r rm rm r
r r
− −

− − =
+ +

uninfected people will use a syringe 

after an infected person has used it. If a shared syringe is used Sδ times before disposal then 

/ Sm δ  syringes are used in each ‘sharing event’ and the average number of uninfected people 

in the group to use the same syringe after an infected person becomes
2

1
Srm r

r m
δ−

+
 . If the 

probability of infection from a contaminated syringe per use is β , but transmission is reduced 

by an effectiveness of Cε  through syringe cleaning and cleaning occurs before a proportion, 

pc, of shared injections, then each susceptible person could acquire infection with 

probability ( )1 C Cp ε β−  if using a contaminated syringe. Therefore, the expected number of 

transmissions in a given sharing group (or probability of a transmission occurring) is 

21
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Then the total number of transmissions expected each year, or incidence (I), is 

=I
21
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The reader is referred to [63] for details of thorough analyses of this static expression, applied 

to Australian IDUs. Below are summary results from these analyses. 

The expected reproduction ratio, R, per IDU was calculated for HIV and HCV as a function 

of the average duration of injecting post-seroconversion (Figure A.1): if each IDU injects for 

an average of D years after seroconversion, then the average number of secondary cases per 

IDU is 
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An epidemic is sustained if R is greater than one [64], implying that each infected person is 

associated with at least one secondary transmission on average. It was found that the 

threshold duration of injecting post-seroconversion required to sustain an epidemic is 11.6 

(7.0-22.4, IQR) years for HIV and 2.3 (1.8-3.2, IQR) years for HCV (Figure A.1). Based on 

behavioural data [54, 65] it is reasonable to assume that the average duration of injecting 

post-HCV seroconversion is ~ten years. This is considerably greater than the threshold of 2.3 

years required to control HCV incidence. In contrast, the duration of injecting for HIV-

infected IDUs, post-seroconversion, is assumed to be much less than for HCV (less than ten 

years) and thus less than the critical 11.6 years required to control HIV incidence.  

Figure A.1: The average number of secondary cases of HIV (orange) and HCV (blue) 

transmission per IDU versus the duration of injecting post-seroconversion. The solid 

lines refer to median simulations and the dashed line refers to one secondary infection. 

 

To identify factors that could provide effective targets for intervention a sensitivity analysis 

was conducted, by means of calculating partial rank correlation coefficients [40] between 

incidence and the sampled model parameters (results not shown). It was determined that the 

number of times each syringe is used before disposal is the most sensitive behavioural factor 

in determining the incidence of both HIV and HCV infection, followed by the percentage of 

injections that are shared. Therefore, the expected change in incidence for HIV and HCV was 
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investigated in relation to the frequency of shared injections and the average number of times 

each syringe is used (Figure A.2). 

Figure A.2: The simulated number of annual (a) HIV and (b) HCV transmissions 

among IDUs in Australia versus the percentage of injections that are shared and the 

average number of times each syringe is used before disposal. The dashed lines refer to 

current levels of sharing and syringe use. 

(a) 

 

(b) 

 

The number of times each syringe is used may be decreased by greater dissemination of 

sterile syringes through NSPs. The number of syringes distributed through NSPs has 

remained relatively constant over the last decade (see Table B.1), suggesting that saturation 

levels have been reached. However, there is also reason to believe that there are opportunities 

for public sector NSP services to increase client reach. It is difficult to estimate the proportion 

of all IDUs that access NSPs, however, the recent National Drug Strategy Household Survey 

revealed that only 51% of those who had injected in the last 12 months usually obtained their 

injecting equipment from public sector NSPs [66]. Structural and policy factors may limit 

access to current NSP services. With the exception of pharmacy-based services, few NSPs 

operate into the evening or are open on weekends. Whilst syringe dispensing machines 

operate 24 hours a day, these not are operational throughout Australia. There are also limits 

on the quantity and range of syringes freely available at some NSP services. Secondary 

exchange of sterile needles and syringes (from one IDU to another) is prohibited in most 

states and territories, and there are some locations where there is demand for NSP, but where 

services are not well developed. These factors suggest that syringe distribution in Australia is 

limited by supply rather than demand, and that increased coverage is possible. 
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If K syringes are distributed each year and a proportionω  of all syringes are not used, then 

the number of syringes distributed that are used is )1( ω−P . The number of syringes used for 

individual injecting episodes among non-sharing IDUs is
(1 )

p

nN s
δ
−

. Similarly, the total 

number of syringes used for individual injecting among all sharing IDUs is 
(1 )

p

n q sN
δ
−

 and 

the total number of syringes used in sharing events is 
s

nqsN
δ

. Therefore,  

( )(1 ) (1 )(1 ) s s p
p p s p s

nN s n q sN nqsN nNK sqω δ δ δ
δ δ δ δ δ
− − ⎡ ⎤− = + + = − −⎣ ⎦   (3) 

defines a relationship between the total number of syringes distributed and the use of syringes 

in this mathematical model (equation 2). Changes in the number of syringes distributed are 

likely to change any, or all, of the following factors in a way that is consistent with equation 

3: the proportion of syringes that remain unused ( )ω , the proportion of injections that are 

shared ( )q , or the average number of times each syringe is used (in shared ( )Sδ or individual 

(non-shared) injections ( )Pδ ). Changes to ω and Pδ will not influence transmission levels but 

changes to q  and Sδ  could potentially result in large reductions in incidence. It could be 

speculated that increased syringe coverage is most likely to influence a decrease in the 

number of injections per syringe (for both personal and shared syringes). Therefore, equation 

3 was used to estimate the change in the average number of injections per syringe used in 

both individual and shared injections, assuming the same percentage increase or decrease for 

both, according to a change in the total number of syringes distributed. The new values for 

the usage per syringe ( Pδ  and Sδ ) were then used in equation (1), and all other parameters 

were sampled independently from their original distributions as defined in Table B.1. This 

was used to estimate the expected incidence of HIV and HCV based on changes in syringe 

distribution (Figure A.3). It should be noted that very large increases in syringe distribution 

are likely to be infeasible and unrealistic. It is also important to acknowledge that other 

relationships between incidence and syringe distribution could be expected if syringe 

distribution affected other factors in equation 3. However, Figure A.3 does demonstrate that it 

greater NSP distribution of syringes may lead to reductions in incident cases of HIV and 

HCV and that if there was a decline in syringe distribution through NSPs then significant 

increases in incidence could be expected. It is likely that the provision of NSP services has 

contained the HIV epidemic among IDUs. 
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Figure A.3: Scatter plots of the simulated number of annual (a) HIV and (b) HCV 

transmissions among IDUs in Australia versus the number of sterile syringes 

distributed in Australia are shown, assuming that syringe distribution changes the 

average number of times each syringe is used before disposal. The blue dots are results 

from 1000 simulations, the red curves represent the median parameter values, and the 

black dashed lines refer to current levels of syringe distribution. 

 (a) 

 

(b) 

  

 
Dynamic transmission model 

The model used in the analyses of this report extends the ‘static’ mathematical expression 

(equations 1 to 3) by including time-dependent parameter estimates for all demographic 

parameters and simulating the dynamic model-based prevalence of HIV and HCV in the 

population. Various assumptions about the role NSPs and syringe distribution among 

heterogeneous groups of IDUs were also considered. 

Furthermore, an extensive natural history model of HIV and HCV monoinfection or 

coinfection was developed to dynamically track the number of people in each HIV and HCV 

health state. A schematic diagram of compartments of the HIV and HCV transmission model 

for IDUs in Australia is presented in Figure A.4. The change in the number of people in each 

compartment was tracked mathematically by formulating a system of 473 ordinary 

differential equations, one for each compartment. One compartment represents IDUs who are 

not infected with HIV or HCV. Fifteen compartments represent IDUs who are monoinfected 

with HCV: in acute stage, fibrosis stages F0, F1, F2, F3, F4, and for each of these, whether 

they are untreated or receiving treatment. People infected with HCV who have advanced 
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fibrosis can progress to clinical outcomes of liver failure, hepatocellular carcinoma, or may 

receive a liver transplant. It is assumed that individuals that progress to these three clinical 

outcomes no longer inject drugs.  

Sixteen compartments represent IDUs who are monoinfected with HIV: individuals who 

become HIV-infected are initially untreated and are assumed to have a CD4+ T cell count 

above 500 cells per μl, then will progress in their disease through categories according to 

CD4+ T cell levels (350-500 cells per μl, 200-350 cells per μl, and <200 cells per μl); HIV-

infected individuals may initiate antiretroviral therapy (for each CD4+ T cell category the 

number of individuals on effective first-line treatment, treatment failure, or effective second-

line treatment are also tracked). This model also tracks potential co-infection of HIV and 

HCV, including all possible combinations of HIV and HCV disease states; however, it is 

assumed that HIV-infected individuals with CD4 counts less than 350 cells per μl and on 

antiretroviral therapy will not also receive treatment for their HCV infection at the same time.  

Thus, 205 ordinary differential equations are used to describe the co-infection of HIV and 

HCV among IDUs. This model also tracks the disease progression of individuals who have 

stopped injecting drugs but are infected with HIV and/or HCV. The number of equations is 

then doubled, plus the equation for uninfected but susceptible IDUs, leading to a total of 473 

ordinary differential equations, one for each model compartment, to describe the number of 

people in each health state. The flows in the number of people between these compartments 

are due to biological, behavioural, clinical, or epidemiological parameters (specified in detail 

in Appendix B). 
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Figure A.4: Schematic diagram of compartments of the HIV and HCV transmission model for IDUs in Australia 
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The mathematical description of the model is below: 
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The equations above describe the change in the number of people in each health state for HIV 

and HCV monoinfection. The complete mathematical model also includes equations for each 

possible HIV and HCV coinfection combination, with the terms of the ordinary differential 

equations amalgamating the appropriate HIV and HCV terms. 

Assumptions for modelling secondary transmissions 

The average age at which IDUs in Australia acquire HCV infection is their early to mid 20s 

[53, 67, 68] and it is likely that IDUs who acquire HIV infection would do so a few years 

thereafter on average. Approximately pMSM=65% of IDUs with HIV are men who have sex 

with men, pF=7% are females and the remaining pM=28% are heterosexual males [54]. For 

IDUs with HCV infection, approximately pMSM=5% of IDUs with HIV are men who have sex 

with men, pF=32% are females and the remaining pM=63% are heterosexual males [54]. It is 

assumed that the average number of long-term sexual partners each IDU has after acquiring 

infection is creg=3-5. In addition, it is assumed that each heterosexual IDU would have an 



Cost-effectiveness of Australian NSPs 

153 

average of ccas=5-10 casual short-term sexual partners (each with one penetrative act) after 

acquiring infection and male homosexual IDUs would have an average of ccas=20-30 casual 

partners after acquiring infection. Most IDUs who share syringes tend to do so with sexual 

partners or close friends [69, 70]. Therefore, some of the potential partners are not susceptible 

to transmission because they are already infected (and probably the primary source for the 

case in question); this complexity is not considered here. It is assumed that HIV transmission 

rates are βHL=0.01 for heterosexual transmission for long-term partnerships, βML=0.1 for male 

homosexuals for long-term partnerships, and per-act probabilities of HIV transmission during 

casual partnerships are βFM=0.0005 for female-to-male transmission, βMF=0.001 for male-to-

female transmission, and βMM=0.01 for male-to-male transmission during unprotected sex 

[71-77]. It is assumed that condom usage is q=80% [78], with efficacy of 95% [79-83]. HCV 

transmission per sexual contact is assumed to be βHCV-a=0.1% per act and βHCV-p=2% per 

long-term partnership [84-86]. 

The average fertility rate in Australia is f=1.93 babies per woman over her lifetime [87] and 

the median age of all mothers of births is ~31 years [88]. Based on the average age at 

infection and the relatively similar infection ages for HIV and HCV, it is assumed that 75% 

of a woman’s births occur after she acquires infection [88]. The probability of mother-to-

child transmission is βHIV-MTCT=2% for HIV (with the use of antiretrovirals and Caesarean 

section) [89-92] and βHCV-MTCT =5% for HCV [93-95]. 

Therefore, the average number of secondary infections through sexual transmission or 

mother-to-child transmission per HIV infection is 

 
( ) ( )

( )
HIV MSM reg ML cas MM M reg HL cas MF

F reg HL cas FM HIV MTCT

s p c c p c c

p c c 0.75 f

β β β β

β β β −

= + + +

+ + +
 

and the average number of secondary HCV transmissions expected per HCV infection is 

 
( ) ( )

( )
HCV MSM reg HCV p cas HCV a M reg HCV p cas HCV a

F reg HCV p cas HCV a HCV MTCT

s p c c p c c

p c c 0.75 f

β β β β

β β β

− − − −

− − −

= + + +

+ + +
. 

Substituting parameter estimates leads to 0.44 and 0.11 secondary HIV and HCV cases, 

respectively, for each primary infection.  


