Efficiency and Productivity in the Australian Health Care Sector

David Cullen and Henry Ergas

Contents

1 Introduction ..2

Overview of the paper ..4

2 A macro view of the relationship between health and productivity ...9

Macro drivers of health expenditure ..9

Macro outcomes of health expenditure ...11

Macro efficiency of the Australian health care system ...13

Health’s contribution to economic growth ...14

3 Measuring productivity in health ..20

Theoretic difficulties in conceptualising productivity in health ...20

A primer on efficiency and productivity in health ...26

Current measures of productivity in health ...31

4 Drivers of inefficiency in health ...33

Are inputs and outputs measured appropriately? ..34

Are the right incentives in place? ...35

5 Conclusion ...38

Appendix A: Allocative and social (distributive) efficiency ...40

The views expressed in this paper are those of the authors and do not necessarily represent the views of
the governments, or the departments of health, of the Commonwealth of Australia or of any state or
territory.

David Cullen is Assistant Secretary, Strategic Policy Unit, Australian Department of Health; Adjunct
Professor of Health Economics and Aged Care Policy at the National Centre for Social and Economic
Modelling; and Adjunct Senior Fellow at the Australian National University’s Australian Centre for Economic
Research on Health.

Henry Ergas is the Senior Economic Adviser at Deloitte Australia and Inaugural Professor of Infrastructure
Economics at the University of Wollongong’s SMART Infrastructure Facility.
1 Introduction

If, as the Maori proverb says, ‘language is the window to the soul’, then productivity and, in particular, public sector productivity are, it seems, the new black. Usage of the term ‘productivity’ increased dramatically in public discourse over the last century, to the stage where it now appears almost as often as the term ‘efficiency’. Concern with public sector efficiency and public sector productivity is a much more recent phenomenon, and here the two terms seem to have developed concurrently (see the Ngrams in Figure 1).

Figure 1 Ngrams of the use of the terms ‘efficiency’ and ‘productivity’ in public discourse

![Graph showing the increase in usage of the terms 'efficiency' and 'productivity' over time.]

In one week in early March 2012, the then Australian Treasurer, the then leader of the Federal Opposition and his Treasury Spokesman, the Secretary of the Commonwealth Treasury and the Reserve Bank Governor all made speeches mentioning productivity.

The charts illustrate the frequency of the appearance of the specified terms per million (or billion) words in the ‘Google Million’ – a sample set of books published in English with dates ranging from 1500 to 2008. No more than about 6000 books were chosen from any one year, which means that all of the scanned books from early years are present, and books from later years are randomly sampled. The random samplings reflect the subject distributions for the year. The analysis for ‘health’ is based on all English language books, rather than the Google Million.

The analysis for health economics is based on all English language books, rather than the Google Million.

Data from: Jean-Baptiste Michel, J-B; Shen, YK; Aiden, AP; Veres, A; Gray, MK; Brockman, W; the Google Books Team; Pickett, JP; Holberg, D; Clancy, D; Norvig, P; Orwant, J; Pinker, Steven; Nowak, MA and Aiden, EL. (2011). ‘Quantitative Analysis of Culture Using Millions of Digitized Books’. *Science* 331 (6014): 176-182.
In health policy, after some initial concern in the early twentieth century, the terms ‘efficiency’ and ‘productivity’ were almost absent from the health economic discourse until the last quarter of the century, with discussion of efficiency dominating those of productivity. Since the mid-1990s, the concept of ‘cost effectiveness’ has also begun to demand attention in the public discourse on health.

At a macro-economic level, the concern with productivity is understandable. In the last four decades of the twentieth century, average annual income in Australia consistently grew by around two per cent per annum in real terms. Labour productivity growth was responsible for about 90 per cent of the growth in average incomes that Australians enjoyed over that period. The first decade of the twenty-first century departed somewhat from this trend, with favourable changes in the terms of trade contributing around half of the growth in annual incomes. Overall, however, the rate of growth in average incomes was not substantially different from earlier decades. That is, the contribution of productivity growth to income growth declined in both proportional and absolute terms. With the inevitable decline in the terms of trade that can be expected in the coming decade, and demographic pressures on labour force participation, the head winds against continued growth in incomes are strengthening. Indeed, labour productivity growth will need to double its trend rate if trend growth in incomes is to be maintained.4

An increasing concern with fiscal sustainability has heightened concerns with productivity in the public sector.5 It has been claimed that the public services sector in Australia is ‘dragging the productivity chain, with annual labour productivity growth at -0.6 per cent, in contrast to the private sector, which stands at 1.4 per cent’.6 The need to address these issues has been pressed, perhaps not surprisingly, by major consulting firms.7

6 Ernst and Young, Australia. (2014). Ensuring Australia’s economic sustainability — Government Agenda.

PwC. (2013). Improving public sector productivity through prioritisation, measurement and alignment.

The ageing of the population, and the implications of that ageing for health expenditure, together with the dominant role played by the public sector in the financing and delivery of health care services has seen a particular focus on productivity in the health sector. Indeed, it has been claimed that, ‘an unsustainable and fragmented health system is one of the biggest threats to Australia’s productivity and long-term prosperity’. In response to these issues, Australia’s Productivity Commission has indicated that it is considering running a roundtable on productivity enhancement pathways in health later this year.

Overview of the paper

This paper seeks to assist Health Chief Executives intervene in the debates about health system productivity that have, to date, been driven largely by Treasuries, who, by and large, subscribe to the views of the Nobel laureate Paul Krugman that:

> Productivity isn’t everything, but in the long run it is almost everything. A country’s ability to improve its standard of living over time depends almost entirely on its ability to raise its output per worker.\(^\text{11}\)

The authors of the current paper find this statement potentially misleading. In the long run, a very small share of economic growth, maybe 10 per cent or so, comes from doing existing things better. Rather, particularly in high income economies, which are not growing primarily by catching up, growth comes largely from doing new things and shifting resources from less socially valuable old things to more socially valuable new things. Dynamic efficiency – which includes the reallocation of resources over time – counts for far more than simply getting more output (be it in terms of quantity or quality) per unit of input.\(^\text{12}\)

That is not to dispute the proposition that increases in dynamic efficiency are a component of productivity growth. Rather, the point is that policy makers need to pay particular attention to the factors that encourage or impede the development of new ways of doing things and the reallocation of resources from more to less productive uses. That suggests a focus on efficiency, as against one on merely 'squeezing the lemon'.

That is all the more the case because efficiency differs from productivity in a crucial respect. Productivity is an average concept: in a production function, which relates inputs to outputs, it corresponds to average product. Efficiency, in contrast, is a marginal concept – it looks at valuations at the margin of decision. What distinguishes prosperous economies is that they have mechanisms that work well in stimulating and guiding individual choice, which is always a question of margins. In that sense, the challenge for policy makers is to focus on how policy affects where the margins lie, and how decisions are taken at the margin.

All that is especially important in Australia, which unlike most mature economies, prospers through combinations of extensive and intensive growth, usually associated with resource booms and swings in the terms of trade. In fact, it is precisely for such growth patterns that conventional productivity measurement can be most misleading, as shifts in the allocation of resources that reflect increases in marginal product may reduce not only the growth rate but even the level of average product, as conventionally measured, at least in the short run.

The present authors therefore have sympathy with the view that policy makers should focus on which activities in the public sector provide value for money and which don’t – and reallocate between them (and presumably, also between them and the private sector).

The paper first examines the macro-economics of health. This analysis is intended to empower health policy makers in their discussions with their counterparts in Treasuries, by demonstrating that there is nothing a priori wrong with societies choosing to make greater investments in health (that is, with health forming an increasing share of GDP). Rather, such increases may be unavoidable, given that health is a superior good, whose demand rises more rapidly than overall incomes, and even desirable given the important role that the health care sector can play in lifting productivity in the economy as a whole – so that, health spending needs to be considered, at least in part, as investment rather than as expenditure. This section of the paper also examines the international evidence of the relationship between key health outcomes – for example, Quality Adjusted Life Years (QALYs) and longevity – and the health system. Examined in terms of that relationship, Australia has a relatively 'efficient' health system, at least in the sense that spending seems low compared to the key health outcomes achieved.

None of this should be cause for complacency, however. While per capita GDP has driven increases in health expenditure in the past, the future will see a greater impact of ageing and possibly of new behavioural issues (such as chronic disease). These trends will test affordability and, in a system where prices do not play an important role in signalling demand or directing supply, efficiency. Moreover, evidence of some ‘flat of the curve’
spending13, and of allocative and productive inefficiency in the system (for instance, reflected in large and persistent cost differences for similar procedures14), suggest the scope to get better value for money.

The paper therefore then examines the measurement of productivity in the health sector. It begins with a theoretic analysis of the inherent difficulties in measuring ‘health system productivity’. The principal difficulty is that most outputs in the health care sector are not priced at market prices. This makes it difficult to measure health outputs in a way that is comparable to outputs in the market sector. Compounding this difficulty, most health outcomes are not solely the product of health system inputs but also of other inputs, ranging from social context to nutrition and individual behaviour. As well as dealing with interdependencies with other determinants of health status, such as education, welfare and living standards, the measurement of productivity in health would also need to deal with timing difficulties – given that the success or failure of health care interventions is not immediately evident (with long lag times for some treatments, and to build the evidence base for treatment). It is also important to recognise the high social costs that can come for using the wrong interventions, which promotes risk aversion. Any useful analysis would need to measure outcomes across the continuum of care rather than within segments. And it would also need to measure outcomes across the public and private sector (which are partly complements and partly substitutes) and capture difficult to measure outcomes such as quality and safety, equitable access and serving vulnerable communities.

It is important for health policy makers to understand these difficulties as they mean that it is complex, in a non-market environment, to provide the incentives required for productivity advance, and it is important to be cautious about nostrums (such as targets and indicators) that can simply distort behaviour. As the Commission on the Measurement of Economic Performance and Social Progress – the Nobel laureates Joseph Stiglitz and Amartya Sen, and Jean-Paul Fitoussi – have said, ‘what we measure affects what we do, and if our measures are flawed, decision making may be distorted’.15

The next section of the paper then turns to the drivers of inefficiency in health, as an understanding of these drivers and the types of inefficiencies that arise in health is central to the development of measures of productivity and efficiency that will actually be useful in assisting managers and policy makers to identify and rectify inefficiencies. A useful place to

begin is to ask why it is that some health care providers (small or large, individuals or corporations) fail to minimize inputs and input costs or to maximise outputs (outcomes). On the one hand, they may be seeking to minimise costs or maximise outputs, but failing to do so because of institutional constraints or because of a lack of information, which prevent them from identifying efficient input combinations and processes. On the other hand, they may not be seeking to minimise costs or maximise outputs, but rather to satisfy other demands, including behavioural or motivational reasons.

There are four main conceptual sources of technical inefficiency (which may, of course, occur independently or in parallel), namely:

- Failing to minimise the physical inputs used;
- Failing to use the least cost combination of inputs;
- Operating at the wrong point on the short-run average cost curve; and
- Operating at the wrong point on the long-run average cost curve.

In one sense, therefore it should be easy for policy makers to design systems that can be efficient and for managers within those systems to drive efficiency. The difficulties are not theoretical but rather practical: Are inputs and outputs measured appropriately and are the right incentives in place to ensure managers can achieve efficiencies once identified?

Efficiency issues must not, however, be treated as technical and measurement questions but rather as core management objectives. This is the subject of the final section of this paper. Complex and unpalatable choices must be made if significant efficiency gains are to be realized. Most important, perhaps, efficiency improvement must never be seen as a one-off purging of current inefficiencies. There may well be a powerful case for a specific structural intervention, but this should not obscure the need to imbue and constantly renew a culture of continuous efficiency improvement at all levels of the system. Without such a culture, all that will be achieved is a shift from one position of static productivity to another. Following the World Health Organisation’s Commission on Macroeconomics and Health16, the present authors consider that a successful approach to developing an efficiency improvement program needs to contain the following components:

- identification and quantification of major areas of technical inefficiency;
- identification of key causes of identified inefficiencies;
- assessment of possible interventions to improve efficiency;
- assessment of likely constraints on and barriers to achieving identified efficiencies;
- development of a reinvestment program for the employment of at least some of the funds released through efficiency gains;

• implementation of structural changes required to facilitate major or one-off improvements, including willingness to invest in such changes; and
• implementation of organizational and cultural shift to continuous productivity improvement, including appropriate performance management systems.

At the core of the issue is the need for specificity: for while each efficient health care provider is efficient in the same way, each inefficient health care provider is inefficient in its own way. It is therefore important to identify specific problems at all levels of the provision of health care services and to develop solutions that will fit localised realities and overcome specific obstacles.
2 A macro view of the relationship between health and productivity

At a macro level, there is a clear relationship between health system spending and key macro parameters, so that spending depends largely on per capita GDP. There is also some relationship between key health outcomes – for example, Quality Adjusted Life Years (QALYs) and longevity – and health system inputs. Moreover, the international variation in that relationship suggests that Australia has a relatively 'efficient' health system, at least in the sense that our spending seems low compared to the key health outcomes.

Macro drivers of health expenditure

Because health is a superior good, a principal driver of health expenditure is wealth. That is, health expenditure typically keeps pace with rising incomes and service expectations, reflecting the high value society places on good healthcare. Indeed, an examination of World Bank data for 169 countries reveals that GDP per capita on its own explains 70.3 per cent of the variation in Health Expenditure per capita between countries (see Figure 2).\(^\text{17}\)

![Figure 2 Principal driver of health expenditure per capita](image)

Removing outliers like the United States of America (USA), which seems to have disproportionately high level of health expenditure per capita for its level of wealth, and

\(^\text{17}\) 2010 data from data.worldbank.org and stats.oecd.org with prices expressed in 2005 international prices using purchasing power parities.
Singapore and Qatar, where special economic circumstances mean that GDP per capita may not be a good measure of average personal wealth, improves the fit of the model to 87.5 per cent. Further improvements to the model can be made by retaining the USA in the model and adding other variables. After examining around 50 socio-economic, demographic and health status variables and permitting dummy variables for each nation and for groups of economically similar nations, the best fit model of the variation in health expenditure per capita, which requires five explanatory variables, is presented in Table 1. The independent variables in the best fit model are:

- GDP per capita (variation from Australian in international $)
- Percentage of population aged 0-14 (percentage points different from Australia)
- Percentage of population aged 65+ (percentage points different from Australia)
- Percentage of private health costs met by private health insurance (PHI) (percentage points different from Australia)
- A dummy variable for the USA (1 = USA, 0 = other).

Table 1 Multi-dimensional model of health expenditure per capita

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient (Australian)</th>
<th>P-value</th>
<th>Lower 95.0%</th>
<th>Upper 95.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept (Base case = Australia)</td>
<td>$3,377.39</td>
<td>1.0×10^{-94}</td>
<td>$3,246.04$</td>
<td>$3,508.75$</td>
</tr>
<tr>
<td>Variations from Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP per capita (per $1)</td>
<td>$0.08</td>
<td>4.1×10^{-47}</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>% of population aged 0-14 (per pp)</td>
<td>$35.58</td>
<td>1.3×10^{-7}</td>
<td>22.90</td>
<td>48.26</td>
</tr>
<tr>
<td>% of population aged 65+ (per pp)</td>
<td>$138.00</td>
<td>5.6×10^{-19}</td>
<td>111.46</td>
<td>164.54</td>
</tr>
<tr>
<td>% of private health costs met by PHI (per pp)</td>
<td>$4.82</td>
<td>0.003</td>
<td>1.69</td>
<td>7.95</td>
</tr>
<tr>
<td>USA</td>
<td>$4,181.87</td>
<td>1.2×10^{-19}</td>
<td>$3,397.40$</td>
<td>$4,966.34$</td>
</tr>
</tbody>
</table>

The best fit model is very strong, explaining 93.6 per cent of the variance in per capita expenditure with strong statistical reliability for each of the model’s coefficients. Overall, the model indicates that the level of health expenditure per capita in an economy is largely explained by economic growth and ageing.\(^{18}\)

It is interesting to look at implications of this model of the drivers of health care expenditure for Australia. Table 2 sets out the relative change in the explanatory variables in the model over the period from 1995 to 2010 for Australia. More than four fifths of the net growth in health expenditure per capita over the period was due to the growth in GDP per capita, while about one sixth was due to the ageing of the population, with about half of this effect offset by the decrease in the share of the population who were aged under 15.

\(^{18}\) Note, in terms of the level of health expenditure per capita, the public private financing split has no explanatory power, while private health insurance tends to marginally increase expenditure.
The situation will be significantly different over the next 15 years. Over that period there is likely to be very little change in the share of the population aged 0-14, perhaps decreasing by a further 0.55 percentage points. At the same time there will be a significant increase in the share of the population aged 65 or older, which may rise by 3.67 percentage points.

Assuming, for the sake of simplicity, that growth in GDP per capita and growth in the share of private costs met by private health insurance continues at the same rate as over the last 15 years, the GDP per capita growth will only account for 62.7 per cent of the net growth in health expenditure per person over the next 15 years, while the growth in the older population will account for 33.2 per cent of the net growth – with almost no offsetting decrease in average health expenditure per capita because of the decrease in the share of the population aged 0-14.

This prospect suggests a greater focus on efficiency is all the more warranted. Demographic pressures on health spending are not ‘self-correcting’ in the same way as economic growth pressures: they are not associated with income increases which at least help make them affordable.

Macro outcomes of health expenditure

The international analysis does not control for the quality of the health outcomes achieved in each country, which is obviously an element in assessing both the overall effectiveness of national systems and the extent to which they provide ‘value for money’ for the resources they consume. To examine effectiveness, Figure 3 illustrates the relationship that obtained internationally in 2010 between the level of health expenditure per capita (HE/k) and the number of potential years of life lost before the age of 70 (PYLL70) – as a proxy for Quality Adjusted Life Years (QALYs) and longevity. There is also clearly a relationship between key health outcomes and health system inputs. However, the relationship is not linear, or, at least, the level of model fit suggests the presence of other contributing factors.

The model in Table 3 captures the effects of these other contributing factors by modelling the impact of changes in three variables on the number of potential years of life lost under the age of 70 per 100,000 people. The variables are health expenditure per capita, smoking rates (lagged by 20 years) and the level of alcohol consumption (using a 10 year average effect). The model fit appears to be very strong, explaining 98.8 per cent of the variance in the output variable with strong statistical significance for each coefficient. The model effects are also as expected – increasing health expenditure per capita and decreasing smoking rates or alcohol consumption all decrease the number of potential years of life.

Table 3: Model of PYLL70 per 100,000 people, Australia, 1980-2006

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>P-value</th>
<th>Lower 95.0%</th>
<th>Upper 95.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>102.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health System Expenditure (HSE/k) per capita in 2010-11 dollars</td>
<td>-0.61</td>
<td>9.0 x 10⁻⁷</td>
<td>-0.80</td>
<td>-0.42</td>
</tr>
<tr>
<td>(coefficient is per $1 change)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of population aged 15 plus who are daily smokers, lagged 20 years</td>
<td>57.99</td>
<td>2.4 x 10⁻⁶</td>
<td>38.68</td>
<td>77.30</td>
</tr>
<tr>
<td>(coefficient is effect per percentage point change)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption, litres per person aged over 15, average of preceding ten years</td>
<td>477.30</td>
<td>3.0 x 10⁻⁷</td>
<td>339.59</td>
<td>615.00</td>
</tr>
<tr>
<td>(coefficient is effect per litre change)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In summary, the multivariate regression equation estimates that:

- each $1 increase in health expenditure per capita is associated with saving 0.61 of a year of life for every 100,000 people under the age of 70;
- each percentage point decrease in smoking rates is associated with saving 57.99 years of life for every 100,000 people under the age of 70; and
- each litre decrease in alcohol consumption is associated with saving 477.30 years of life for every 100,000 people under the age of 70.20

Without claiming these relationships are necessarily fully causal, the relative importance of each of these factors in addressing premature mortality can be illustrated by converting each of the marginal effects to the impact of a one percent change in each of the variables (from the current level). Using the modelled parameters, and treating these as causal effects:

- each one per cent increase in health expenditure per capita saves 13.2 years of life for every 100,000 people under the age of 70;
- each one per cent decrease in smoking rates saves 31.0 years of life for every 100,000 people under the age of 70; and
- each one per cent decrease in alcohol consumption saves 60.6 years of life for every 100,000 people under the age of 70.

Macro efficiency of the Australian health care system

Compared to other countries, Australia has an *efficient health system*, at least in the sense that relatively high health outcomes are obtained with relatively low levels of expenditure. This was confirmed by the most recent Global Burden of Disease Study21, which found that Australia (compared with similar countries – the top 15 countries by income per capita), has the 12th lowest health spending per capita and yet ranks highly in terms of health outcomes - ranking 2nd among the 15 highest income countries in terms life expectancy and 4th in terms of premature mortality.22 Figure 4 compares total public and private health expenditure (as a proportion of GDP) with life expectancy to provide a broad measure of the comparative efficiency of the health systems of 178 countries.

20 These are marginal effects. That is, they represent the impact of the first $1, one percentage point, or one litre change.

21 Burden of disease analysis is a technique used to assess and compare the fatal and non-fatal effects of diseases among population groups over time and combines data around premature death, measured by the years of life lost and non-fatal health outcomes, measured by years lost due to disability into a summary measure called disability-adjusted life years.

The most ‘efficient’ national health systems, in the lower right quadrant, produce the best health outcomes for the most reasonable levels of expenditure. Australia’s life expectancy is higher than all but a handful of countries, while its level of health expenditure is the average for comparable economies.23 Using similar metrics, Bloomberg recently found that Australia had the seventh most efficient health system in the world.24

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{relative_efficiency.png}
\caption{Relative efficiency of national health systems}
\end{figure}

Notwithstanding the relative efficiency of Australia’s health care system, managers in the public and private sectors have a responsibility to monitor and ensure the ongoing efficient operation of the services that they fund and deliver. Moreover, as the health care sector becomes a greater part of Australia’s economy the need for efficiency will become greater as crowding-out effects will increase competition for, and hence the price of, the resources that the sector needs to deliver its services.

\textbf{Health’s contribution to economic growth}

Drawing on the clear, if complex, relationships between health outcomes and health system inputs, it is possible to extrapolate some implied rates of return on health expenditure, but

23 Data for each country is for the most recent year available and is drawn from the World Bank http://databank.worldbank.org/data/databases.aspx
24 http://www.bloomberg.com/visual-data/best-and-worst/most-efficient-health-care-countries
these need to be caveated by both the inherent complexity of the health ‘production function’ and the possibility of diminishing returns – that is, being on the ‘flat of the curve’.

First, however, it is necessary to consider the special nature of public and private spending on health, which like spending on education, needs to be considered, at least in part, as investment rather than consumption. In the standard neoclassical economic growth model (the Solow Growth Model) the output of goods in an economy depends on physical capital and labour hours.\(^\text{25}\) Human capital in the form of education also contributes to economic growth by altering the quality of labour inputs.\(^\text{26}\) Similarly, human capital in the form of health, which influences worker energy, effort and reliability, also contributes to economic growth. Initial work strongly suggested that health status was an important contributor to economic growth.\(^\text{27}\) More recent attempts to quantify this contribution have produced some dramatic results.\(^\text{28}\) A 2004 study found that a one-year improvement in a population’s life expectancy contributes to an increase of 4 per cent in output.\(^\text{29}\) In the Australian context, a recent study found that a 1 per cent decrease in cancer mortality rates would result in a 1.6 per cent increase in GDP per capita. Interestingly, the study also found that the increase is greater when cancer deaths fall across the entire population, rather than just among the working age population.\(^\text{30}\) The relatively large size of the economic growth feedback from health investment raises the possibility that some investments in health might, in effect, ‘pay for themselves’ through their impact on overall incomes quite apart from any improvement in welfare. Under this view spending on health should be regarded, at least in part, as an investment rather than as consumption.

In determining the return that is achieved on this investment it is important to capture the total growth effects of investments in health – which is more complex than for some other investments because the interaction between health and growth is two-way. For example,

improvements in health (and especially life expectancy) can also influence life cycle savings and capital accumulation, as individuals respond to the prospect of more years of retirement by increasing savings. As a result, improvements in health not only increase output directly through improved labour productivity (as reductions in years of illness increase productive effort) but also through the greater accumulation of physical capital. Finally, as improvements in health also lower rates of mortality and disease, they increase the effective lifetime of, and decrease the depreciation rate of, human capital. As a result, an increase in health raises investment in human capital and thereby has a further, indirect positive effect on economic growth. In this regard, it has been shown that improved health increases both the expected returns to and investment in education.

Unfortunately, the implied rate of return is unlikely to be achieved, at least in modern economies which are already at relatively high levels of income and population health. The models used tend to ignore the significant two way causation effects (longevity driving health expenditure) within the relationship between health expenditure and economic growth. To produce some simple estimates of the contribution of health expenditure to economic growth in Australia that attempts to control for two-way causation a model has been developed that looks at the impact of health expenditure per capita (HE/k) on the potential years of life lost before the age of 70 (PYLL70). Using PYLL70 as the dependent variable excludes the age cohorts where most longevity gains accrue and where health expenditure caused by age is greatest. This measure also focuses on the population who are mostly in the workforce and where the direct productivity effects are likely to be greatest.

The multivariate regression equation in Table 3 estimated that each $1 increase in HE/k saves 0.61 PYLL for every 100,000 people under the age of 70. Quantifying this effect across the Australian economy as a whole in 2010-11 suggests that the return to investment of health expenditure is about 28.8 per cent (see Table 4).

This rate of return implies that the cost per life year purchased from the health care sector was $163,934, which is on all fours with the Value of a Statistical Life Year (VSLY) recommended for use in Commonwealth and COAG calculations of cost effectiveness.

33 For simplicity, the modelling assumes a steady state. That is, it assumes that the net present value of future benefits of current expenditure is equal to the current benefits of past expenditure.
34 The VSLY is a reasonably objective, market-based measure and is estimated by observing peoples’ demands for compensation before accepting risk and willingness to pay to avoid risk. An implication here is that payers for health across the public and private financing systems, implicitly place similar values on life years saved as estimated from willingness to pay studies. See: Office of Best Practice Regulation. Department of Finance and Deregulation. (2008). Best Practice Regulation Guidance Note, Value of statistical life.
2007, the VSLY was $151,000. A cost per life year saved of $163,934 would also imply that the whole health system is cost effective by World Health Organization standards, which define an ‘intervention’ as being cost effective if it saves one year of healthy life for up to three times GDP per capita.\(^\text{35}\)

Table 4: Impact of health expenditure on economic growth in 2010-11

<table>
<thead>
<tr>
<th>Population</th>
<th>22.2 million (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in PYLL70/100,000 per $1 of HE/k</td>
<td>0.61 years (B)</td>
</tr>
<tr>
<td>HE/k</td>
<td>$5,796 (C)</td>
</tr>
<tr>
<td>PYLL70 saved</td>
<td>709,638 years (D=A\times B\times C)</td>
</tr>
<tr>
<td>Value added to the economy</td>
<td>$37.6 billion (E=D\times Participation\times AWE\times 52\times 2)</td>
</tr>
<tr>
<td>Total HE</td>
<td>$130.3 billion (F)</td>
</tr>
<tr>
<td>ROI of HE (direct return)</td>
<td>28.8% (=E/F)</td>
</tr>
</tbody>
</table>

In summary, applying the estimated return on investment on health investment of 28.8 per cent to the increase in health expenditure between 1993-94 and 2009-10 (see Table 5), health was a significant contributor to economic growth, directly accounting for about 3.3 per cent of all economic growth in Australia.

Table 5: Impact of health expenditure on economic growth, 1993-94 to 2009-10

<table>
<thead>
<tr>
<th></th>
<th>1993-94</th>
<th>2009-10</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP (2009-10 prices)</td>
<td>$746.9 b</td>
<td>$1,292.3 b</td>
<td>73.0%</td>
</tr>
<tr>
<td>Total health expenditure (GDP adjusted)</td>
<td>$54.8 b</td>
<td>$121.4 b</td>
<td>121.3%</td>
</tr>
<tr>
<td>ROI of additional HE (28.8%)</td>
<td>$19,157 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of GDP growth due to HE</td>
<td>3.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In terms of life expectancy, this analysis implies that an increase in life expectancy of 1 year would increase GDP by 0.5 per cent. The full effect of health expenditure on economic growth is likely to be much higher. First, increases in life expectancy are likely to increase the length of working lives. It is worth stepping back to consider a simple thought experiment. Assume life expectancy is 80 years and a working life of 40 years. If life expectancy increases by a year but there is no change in working lives, then the impact on the size of the economy will be limited to those whose lives would otherwise end before retirement age. However, if working lives remain a constant share of lifespan, then they will increase by 1.25 per cent (six months on 40 years). The total impact of health expenditure

on life expectancy is then likely to be 3½ times that estimated. On that basis, the share of GDP growth due to health expenditure would be in the order of 10 per cent.\footnote{There are also other confounding factors to be considered. On the one hand, there could be ‘third round’ effects on health spending as a result of increased longevity from higher spending on health – depending on compression of morbidity. On the other hand, poor health can reduce the effectiveness of workers. To the extent that longevity is a useful proxy for the health of a population, then higher life expectancy might also be expected to reduce the productivity impact of poor health. Moreover, longer working lives are associated with increased levels of experience among older workers, which may also boost productivity for a portion of the workforce. Longevity may also increase human capital investment in the economy. That is because longer working lives increase the length of time that individual workers earn a return on their education – shifting the balance between the costs (in terms of time and resources) of obtaining an education, and the benefits (in terms of higher wages) of that education. Other things equal, that shift provides individuals with a greater incentive to invest in their own human capital – thereby increasing the future output of those workers. However, these effects are difficult to measure in practice, and more difficult still to disentangle from the effects of longevity on the population and participation components of the output equation.}

It is interesting to note that the most recent study by the OECD, which uses a quite different methodology, is consistent with this estimate.\footnote{Barbiero, O and Cournede, B. (2013). \textit{New Econometric Estimates of Long-term Growth Effects of Different Areas of Public Spending}. OECD Economic Department Working Paper No. 1100.} The OECD study has found that an increase in health expenditure by government by 1 per cent of GDP would tend to increase the growth rate for GDP by 0.03 percentage points per year (cumulatively) and the net present value of all future gains from the increase in health expenditure would be 12 per cent of GDP (discount rate of 5 per cent), but with the majority of the effect occurring after five years. Between 1993-94 and 2009-10 the share of GDP spent by governments on health in Australia increased by 1.18 percentage points while GDP grew in real terms by 72 per cent. Assuming half the total effects of the additional expenditure have been achieved within the time frame then 7.1 percentage points of the GDP growth over the period can be attributed to the increase in health expenditure. This equates to increases in health expenditure being responsible for 9.7 per cent of the economic growth over the period.

These results need to be caveated in several respects. Most importantly, causality is inevitably difficult to assess, and the regressions spelt out above cannot fully capture causal effects. To that extent, the relations they estimate, though clearly strong, are in the nature of associations, and extrapolations from the results risk confusing cause and effect.

No less importantly, even where the relationships do capture causality, there is the possibility of diminishing returns. The best single variable line of fit of the relationship between the international data for health expenditure per capita (HE/k) and the number of potential years of life lost under age 70 (see Figure 3) was a logarithmic curve, which raises the possibility that Australia lies towards the end of the HE/k scale where the logarithmic curve is flattening. However, this does not mean the scope for the health system to
contribute to income growth has been exhausted. Rather, if there is room for increases in efficiency, then those efficiency improvements could boost incomes (and welfare more generally) by shifting the position of the curve (as against merely moving along the existing curve).

Put slightly differently, to the extent to which the Australian health care system is at the ‘flat of the curve’, the marginal return on further spending will be smaller than the average return has been in the past. That would suggest a need to pay greater attention to the efficiency of spending that may have been done previously. Increasing the efficiency of that spending will be important for three reasons: it will contribute to achieving further increases in health outcomes, improving welfare and raising incomes; it will permit savings in outlays, freeing resources for other uses; and to the extent to which it reduces the call on public expenditure, it will allow reductions in taxes (or avoid increases in taxes), with corresponding reductions in the efficiency costs taxes inevitably involve.
3 Measuring productivity in health

Overall, the results presented above may be reassuring about past outcomes; they are, however, anything but cause for complacency. While per capita GDP has driven increases in health expenditure, the future will see a greater impact of ageing and possibly of new behavioural issues (such as chronic disease). This will test affordability. Moreover, evidence of some 'flat of the curve' spending, and of allocative and productive inefficiency in the system (for instance, reflected in large and persistent cost differences for similar procedures), suggest the scope to improve performance.

However, while it is important to improve productivity, it is also important for health policy makers to recognise that it is complex, in a non-market environment, to provide the incentives required for productivity advance. Moreover, precisely because of those complexities, nostrums such as targets and indicators may simply distort behaviour, reducing efficiency in the longer term.

This section begins with a consideration of the challenges involved in measuring 'health system productivity' from the perspective of economic theory. It then provides a primer on the definition and measurement of efficiency and productivity in health. The section concludes by analysing the difficulties inherent in some of the proxy measures for productivity and efficiency that are currently used in health.

Theoretic difficulties in conceptualising productivity in health

It is difficult to measure 'health system productivity' in a manner consistent with the measurement of productivity in the market sector of the economy. First, because most outputs in the health care sector are not priced at market prices, the health system's output cannot readily be valued in a way comparable to outputs in the market sector. Second, and compounding the first difficulty, most health outcomes are not solely the result of health system inputs but also of other inputs, ranging from social context to nutrition and individual behaviour.

Measurement difficulties inherent in the non-market sector

At an aggregate level (that is, applied to large parts of the economy) productivity is an aspect of national income and product, and aggregate measures of productivity are usually derived from some measure of national income and product. Those measures are, in turn, attempts to meaningfully sum up the income and product of the individuals that comprise

the aggregate; where ‘meaningfully’ means that the aggregates are not arbitrary summations but reflect economic valuations of what is being added up.

It is possible to do this in the presence of market decisions precisely because they are guided by individual valuations. For example, individuals adjust their relative consumption of apples and oranges to the relative price of apples and oranges; those adjustments made, individuals must be placing the same relative value on apples and oranges, where that relative value equals those products’ relative price, for if they were not, they would reallocate their consumption. As a result, relative prices can be used as the basis for meaningfully adding up apples and oranges (though even then, many additional assumptions are required to get to something resembling the national income and product measures for apples and oranges).

No such basis for meaningful aggregation exists for non-marketed goods and services. The extreme cases are pure public goods, such as national defence, which (because they are not excludable and non-rivalrous in consumption) provide the same level of output to all those within a national economy. In these cases, all individuals consume the same level of output and the only difference between them is in the value they place on that consumption. As a result, the only meaningful way to add up individual levels of consumption would be to know those individual values, which are not known. Moreover, even if the individual values were known, and there was some way of defining the quantities of defence individuals consumed, adding defence, thus valued, with (say) frozen pizza, valued at market prices, would involve adding vertically summed valuations for the public good with horizontally summed valuations for the second – which is not obviously meaningful.

The point is that looking for a way of adding these outputs up with the market outputs captured in national income accounting is not difficult but impossible: a search for a will o’ the wisp, which leads, as will o’ the wisps do, onto dangerous ground. It is not that the resulting measures will be inaccurate but that they won’t make sense, any more than adding up dollars and yen. Moreover, the greater the degree to which government is supplying the kinds of goods we usually think it should – i.e. goods that have a high degree of ‘publicness’ – the less sense the measures will make.

Although health is not a pure public good, the delivery and financing arrangements for health care in Australia mean that the health care sector cannot properly be considered to be a part of the market sector of the Australian economy. Prices in the sector are not set by

39 That is, individuals do not equalize marginal valuations of defence to the relative price of defence, but equalize its quantity and adjust their marginal valuation. Of course, it is possible to imagine a pure Wicksellian exchange economy in which equalization of marginal valuations for public goods occurs, but that requires many unrealistic assumptions. A sketch of such an economy and the conditions for equalization is in James Buchanan (1968) *The Demand and Supply of Public Goods*, Rand-McNally, pp.12-47.
reference to a market that comparatively prices the valuations of the various outputs by consumers. Rather prices are, to a various but always considerable extent, set by government – clearly in public hospitals (where service is rationed by waiting, rather than by price), almost entirely in respect of subsidised pharmaceuticals and largely in the market for subsidised medical services. As a result, prices in the health sector can and do move independently of supply and demand. Thus, although pharmacies and medical services operate in the private sector they cannot be said to operate in the market sector. As a consequence it is not technically possible to measure productivity within the health sector in a way that is directly commensurate with measures of productivity in the market sector.

The technical inability to measure productivity in the health sector should not, however, be considered a misfortune. As noted above, the market concept of productivity is an average concept: in a production function, which relates inputs to outputs, it corresponds to average product – and average products can be very misleading. \(^4^0\) The related concept of efficiency, in contrast, is a marginal concept – it looks at valuations at the margin of decision. This concept is more appropriate for policy makers, where the challenge is to focus on how policy affects where the margins lie, and how decisions are taken at the margin.

A concentration on productivity understood as efficiency rather than market productivity forces the focus onto which activities in the public sector provide value for money and which do not, and onto the question of reallocation both between public sector services and between the public and private sectors. Moreover, while it is not possible to measure productivity in the health care system on a basis strictly analogous to the market sector, the reason we are interested in productivity is because we want to be more productive. Even if we can’t measure public sector output in a way consistent with the conceptual framework for national income measurement, we can identify a broad range of outputs the public sector produces and measure those, relating them to the inputs it consumes as a proxy for productivity.

A note of caution is needed however. In the private sector, the internal measures firms use to gauge their performance ultimately don’t matter all that much – if the indicators a firm uses are wrong, and induce responses from managers that reduce efficiency (say by degrading product quality), the competitive process will sort it out. Not so in large parts of the public sector, where consumers and taxpayers don’t have a choice. This results in a paradox.

\(^4^0\) Conventional productivity measurement can be misleading even in the market sector. The mining industry has recently confirmed that shifts in the allocation of resources that reflect increases in marginal product may reduce not only the growth rate but even the level of average product, at least in the short run.
The very difficulty of measuring efficiency in the public sector makes it attractive to rely on intermediate indicators, such as measures of cost-effectiveness; but if those measures are used as targets, and performance relative to the targets has any consequences, then we need to worry about how those targets will affect behaviour – to an even greater extent that we would in the market sector. In that context, it is useful to mention one stylized fact, one economic theorem and one puzzle.

The stylized fact is Campbell’s Law, which says that ‘the more any quantitative social indicator is used for social decision-making, the more subject it will be to corruption and the more apt it will be to distort the social processes it is intended to monitor’. ⁴¹

The economic theorem is Bengt Holmström’s multitasking theorem, a foundational result in the economics of incentives. ⁴² Broadly, it states that when activities are carried out together and agents can reallocate effort from achieving one output to another, the efficient strength of the incentives provided can be very sensitive to the value of the outputs most difficult to measure. Put in somewhat obvious terms, strong incentives for observable outcomes can be very dangerous if they lead the troops to always have (the easy to measure attribute of) well-polished parade boots but to lack (the difficult to measure attribute of) well-honed skills of tactical judgement under fire.

The final point for this section is a bit of a puzzle, to economists at least. This is the oil and water nature of incentives and motivations: or slightly more technically, the non-convex relation between bundles of incentives and motivations on the one hand and outcomes on the other. Where motivations form a congruent package, adding a pinch of another type of motivation or incentive can have very substantial adverse results. This is important because in contexts where inputs and outputs are difficult to measure, motivation often relies on strong norms of professional conduct, reinforced by well-structured career hierarchies in

⁴¹ Campbell, DT. (1975). ‘Assessing the impact of planned social change’, in Social Research and Public Policies: The Dartmouth/ OECD Conference, Hanover NH. Economists commonly refer to Goodhart’s Law which, as originally formulated (also in 1975), said that: ‘As soon as the government attempts to regulate any particular set of financial assets, these become unreliable as indicators of economic trends.’ Campbell’s formulation is more general and more closely linked to individual incentives.

⁴² Holmström, B, Moral Hazard in Teams. The Bell Journal of Economics 13, no. 2 (1982): 324–340. Holmström’s theorem is an impossibility theorem proving that no incentive system for a team of agents can make all of the following true:

1. Income equals outflow (the budget balances),
2. The system has a Nash equilibrium, and
3. The system is Pareto efficient.

Thus a Pareto-efficient system with a balanced budget does not have any point at which an agent can not do better by changing their effort level, even if everyone else’s effort level stays the same, meaning that the agents can never settle down to a stable strategy; a Pareto-efficient system with a Nash equilibrium does not distribute all revenue, or spends more than it has; and a system with a Nash equilibrium and balanced budget does not maximise the total profit of everybody.
which advancement occurs through tournaments. They are, in the jargon of the current economics of organization, based on defining and enforcing identities, with reward structures linked to the main features of those identities.43 There are sound efficiency reasons for that, but what is interesting is that adding performance incentives that deviate even slightly from that model can substantially undermine its effectiveness.

Quite why motivations would operate that way is puzzling.44 Take the claim that paying for blood would ‘crowd out’ voluntary donations. At first blush, that such crowding out would occur is somewhat implausible. After all, those who would otherwise have donated seem no worse off merely as a result of payment being available. Indeed, to the extent to which they receive the payment, they would appear to be better off, as they could get both the satisfaction associated with the supply of blood and an increased income (which if they so wanted, they could then donate to other worthwhile causes). Under conventional assumptions (and certainly for ‘small’ payments, so that income effects can be ignored), supply curves are upward sloping, and the relative price effect (that is, the fact that payment increases the marginal revenue from supplying blood relative to other uses of time) should induce even voluntary donors to increase (or at least not reduce) the amount of blood they supply. Despite this, there are good reasons to expect that the opposite reaction will occur in at least some circumstances. That should induce us to great caution about tinkering with motivations and incentives. The failure to show that caution may lead to organisations that are less productive, and especially less efficient, rather than more.

Accounting for all aspects of the production of health outcomes

As Figure 5 illustrates, entities in the Australian Health Care Sector, like other service sectors of the Australian economy, use inputs (physical and intellectual resources) to produce outputs (services) that they supply to end users (consumers).

Demand for health services is generated by consumers who seek the outputs of those services in the belief that those outputs will improve their health status (outcomes). Within the Health Care Sector, inputs such as the health workforce (staff and their skills), buildings, land, technology, medical supplies, food, bed linen, office supplies, utilities, etc are used to produce outputs such as a new knee, immunity to disease, etc. The ‘services’ box represents the micro-production functions of the health sector. Services are combinations of inputs designed to produce certain outputs. The services of the health sector are numerous and vary substantially in character encompassing consultative and procedural services delivered in a range of community and institutional settings. They include GP consultations, acute care treatment (such as hip replacements, cataract operations and oncology treatments), immunisations, staff training and scientific research.

Outside the Health Care Sector lie the domains of Funding and Outcomes. The fact that funding is largely exogenous has been discussed and is the technical reason why the health sector cannot be considered to be a part of the market sector of the Australian economy. Equally, the fact that the Outcomes domain also lies at least partly outside the sector contributes to the difficulty in measuring efficiency/productivity in the health sector.

Figure 5 as a whole represents a part of the production function for Health Status. However, Health Status is not simply a function of Health Care. Rather Health Status is a function of several factors, which can, for convenience, be grouped as Health Care, Environment, Human Biology and Life Style. The quantum of these four inputs that are fed into the Health Status production function are each dependent, in part, on the allocation of funding by governments and individuals (see Figure 6).

Figure 6: Production Function for Health Status

Figure 5 therefore represents two production processes related to health whose efficiency/productivity can be analysed: the production of health outputs by the Health Care Sector
(production within the dotted box) and the production of Health Status (between the Funding domain and the Outcomes domain, noting that the Health Care Sector is only one part of this production function – with the full production function shown in Figure 6).

Technically, these two production functions are related, as measuring the efficiency of the Health Care Sector as a whole is the same as measuring the efficiency of the Health Status production function, under the assumption that all other inputs as available for free in a given quantity. However, different levels of aggregation and disaggregation are possible in the two production processes, with the choice of production function and of the level of aggregation or disaggregation to be studied determined by the question at issue.

As well as dealing with interdependencies with other determinants of health status, such as education, welfare and living standards, the measurement of productivity in health also needs to deal with timing difficulties – given that the success or failure of health care interventions is not immediately evident (long lag times for some treatments, and to build the evidence base for treatment).

The measurement of productivity in health also needs to recognise the high social costs for using the wrong interventions, which promotes risk aversion. Any useful analysis would also need to measure outcomes across the continuum of care rather than within segments. And it would need to measure outcomes across the public and private sector and capture difficult to measure outcomes such as quality and safety, equitable access and serving vulnerable communities.

A primer on efficiency and productivity in health

One of the difficulties in measuring efficiency/productivity in health is that different measurement approaches and adjustment levers may be appropriate in different situations. Moreover, there are several different questions of efficiency and it is important to be clear about what kind of efficiency is being measured. Consider the stylised representation of the health production possibility frontier in Figure 7.

The horizontal axis represents the cost of health factor inputs. The vertical axis is the quality and quantity of life; think of it as quality adjusted life years (QALYs). The dotted line is the ‘production possibility frontier’, meaning that all points on and up to the line can be attained by the health system and points beyond it cannot. For a given cost (factor inputs) higher up the survival/quality of life axis is to be preferred. Likewise, for a given survival/quality of life value, lower cost is to be preferred.
Technical and productive efficiency

Do current processes within the health care sector maximize output for a given level of input? This is the question of technical efficiency. Technical efficiency is the effectiveness with which a given set of inputs is used to produce a given output. An entity is said to be technically efficient if it is producing the maximum output from a given quantity of inputs, such as labour, capital and technology. Put another way, technical efficiency occurs when the optimum combination of factor inputs is used to produce an output.

In terms of the stylised current production possibility frontier in Figure 7, points on the frontier (B, C, D and E) represent health systems that are technically efficient.

In the health care sector, the questions of technical efficiency can be asked at the level of an individual output (a new knee, a new child, an immunized individual, etc) or at an aggregate level, in which case outputs need to be aggregated through a system of weighting.

Inputs in health can be aggregated:

- on the basis of cost; or
- in a two dimensional model of non-labour costs; and quality adjusted labour inputs (noting that quality adjustment for labour inputs is often done on the basis of relative labour costs); or
- in a multidimensional model of: non-labour costs; and several labour input quantities (e.g., specialist, GP, nurses, allied health worker).

Outputs and outcomes in health, as in all sectors, have two components: quantity and quality. The three-tiered ‘Outcome Measures Hierarchy’ in Figure 8 illustrates the
comprehensiveness of the concept of ‘outcome’ in health care.45 The top tier is generally the most important, with lower-tier outcomes involving a progression of results contingent on the higher tiers.

Figure 8: Outcomes Measures Hierarchy

An important aspect of the quality dimension is to ensure homogeneity of clients, that is, to control for variation due to differences in the nature and recipients of treatments. One way to do this is to group clients into output groups by principal diagnosis, as there is a clear link between diagnosis (e.g. knee that needs replacement) and output in the sense used in the production function. At the level of an individual output, quantity controlled for quality, the technical efficiency question for the relevant micro-production function is then solved by capturing (and ensuring the commensurability of) all inputs. The difficulties that arise here in the hospital sector are well known given the significant literature that has built up around this issue:

- Is principal diagnosis (or Diagnosis Related Group) a significantly robust discriminator between types of interventions? It is not contradictory to hold that this level of aggregation is appropriate for average pricing but may not be appropriate for efficiency measurements, which are concerned with the marginal.

• Are there other aspects of quality (for example, readmission) which are not captured by principal diagnosis (or Diagnosis Related Group)?

• Are all inputs identified and costed in a way which allows for aggregation and comparison? In particular, are costs incurred outside the hospital sector appropriately captured and, indeed, are costs incurred in different hospitals able to be aggregated?46

There are even greater difficulties in attempting to measure productivity/efficiency in the primary care sector. This is not least because principal diagnosis is not currently captured in the primary care financing arrangements and so it is difficult, if not impossible, to control for quality by grouping similar patients.

Measuring the technical efficiency of the entire health care sector requires further aggregation of inevitably heterogeneous inputs and outputs.\(^{47}\) (A comparison of the number of papers that have been published recently on hospital efficiency compared to papers on whole of system efficiency is in itself instructive – compare footnotes 45 and 46.) At the present time, given the lack of information flow between the different health care sectors and the inability to aggregate and disaggregate in primary care, the only approach that is feasible is to aggregate the gain in QALYs or a similar measure associated with any output. However, such gains may not be well understood and it may be hard to differentiate the impact of the health care intervention from other factors – as QALYs are more a health outcome measure than a measure of the (narrowly defined) health system's own outputs.\(^{48}\)

Dynamic efficiency

Points above the current production possibility frontier in Figure 7 (G and H) represent health systems that cannot be achieved at current levels of technology/regulation. Changes that move the current production possibility frontier to the new production possibility frontier represent gains in dynamic efficiency.

Note, however, that it is possible for all producers in a system to achieve perfect technical efficiency only if there is no possibility of dynamic efficiency. In any system in which practice is changing, there will always be early adopters and other actors for whom the most sensible choice is to maintain current practice until the variations in practice have been proved to be more efficient – given that change comes at a cost and that that cost may be higher for some actors than for others. Put in terms of the two production possibility frontiers in Figure 7, if there is a gap between these two frontiers then there is a possibility of dynamic efficiency (moving from one to another) but organisations that remain (even in the short term) on the current frontier are necessarily 'inefficient' compared to the new frontier, even during their transition -- but that may, so to speak, be an 'efficient inefficiency'. As a result, over time, the gains in efficiency come both from some actors

\(^{48}\) Note, however, that the influence of non-health sector causal factor of health outcomes can be controlled for, to an extent at least, by ensuring the analysis controls for variables such as age, gender, location and socio-economic status where these variables are proxies for the non-health sector causal factors.
pushing out the frontier and from others catching up: or if they don’t, in a competitive market, being forced to exit.

That poses obvious institutional issues for the health system, where the rewards and punishments associated with innovating, catching up or failing to do so may not align with the associated social benefits. The persistence of wide spreads in the efficiency with which actors in the health system operates may in part reflect the 'efficient inefficiency' referred to above; but it is also likely to reflect a selection environment that is too weak, in the sense of not providing sufficient incentives for best practice and average practice to converge, and adaptation costs that are unnecessarily high. Addressing those sources of potential inefficiency could well be of critical importance, and requires a greater understanding of the mechanisms shaping the pattern and persistence of deviations from best practice.

Allocative and social (distributive) efficiency

Allocative efficiency is concerned with the issue of whether the current health care sector offers the most appropriate mix of services. Similarly, social efficiency is concerned with the optimal distribution of resources in society, taking into account all external costs and benefits as well as internal costs and benefits. These efficiencies, in the view of the authors of the present paper, should not be the principal focus of the current discussion – not least because the achievement of technical efficiency is a necessary precondition for the achievement of allocative efficiency. For completeness, allocative and social efficiency are further discussed in Appendix A.

Current measures of productivity in health

The difficulties discussed in this paper have led to the development of the view in some quarters that other economic concepts, more amenable to application in the health care sector, may be a more appropriate focus for discussion. There has tended to be a focus on:

- **Micro-efficiency** – Do processes maximise outputs for a given level of inputs (technical and productive efficiency)? Is the most appropriate mix of services being delivered (allocative efficiency)?
- **Cost effectiveness / value for money** – Are interventions achieving the best outcome in the best way possible?
- **Effectiveness** – Are interventions achieving the desired outcome?
- **Quality** – Are interventions of the appropriate quality?

It is sometimes asserted that the use of these alternative measures as a proxy for productivity can help policy makers decide the best allocation of funding to deliver the desired outcomes. While all of these metrics are potentially of value, the claim that they can determine funding allocations is problematic. The third and fourth ‘proxies’ are really
prerequisites for a discussion of efficiency and are not properly measures of efficiency at all. The cost effectiveness proxy (which seems to be concerned with allocative efficiency) also needs to be well understood if it is to be useful.

Table 6 analyses some of the measures that are currently used as proxy indicators of productivity in health for various purposes. Each measure has its benefits and limitations. Gaps are especially evident in the measurement of safety and quality, of care in out-of-hospital settings, and in labour workforce efficiency indicators.

Table 6: Current indicators of productivity/efficiency in health

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Utility</th>
<th>Limitation/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative cost / efficiency (Activity Based Funding - ABF)</td>
<td>• Compares service provision at case-mix level nationally</td>
<td>• Does not measure whole of system outcomes (Non-hospital services not included, and smaller / rural / remote hospitals not included)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not measure technical efficiency but only relative inefficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Controls for quality to an extent (through diagnosis but not for readmission)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cost attribution processes different in public and private sectors</td>
</tr>
<tr>
<td>National access targets</td>
<td>• NEAT - Measures access to emergency department services</td>
<td>• Does not measure quality of service provided (outcome)</td>
</tr>
<tr>
<td></td>
<td>• NEST - Measures access to elective surgery</td>
<td>• Does not measure whole of system outcomes (assumed benefit to allocative efficiency)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not measure technical efficiency</td>
</tr>
<tr>
<td>Average length of stay and relative stay index</td>
<td>• Hospital efficiency</td>
<td>• Hospital-centric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Controls for quality to an extent (through diagnosis but not for readmission)</td>
</tr>
<tr>
<td>Unplanned readmission rate</td>
<td>• Effectiveness of hospital care</td>
<td>• Only public hospitals, and where readmission is to the same hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not take into account whole-of-system push and pull factors</td>
</tr>
<tr>
<td>Potentially preventable hospitalisation rates</td>
<td>• Access to effective primary or preventative care</td>
<td>• Reliant on hospital data only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not distinguish between drivers of ineffective primary and preventative care (availability v quality)</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>• Efficiency and effectiveness of health system</td>
<td>• Other social determinants of health contribute to longevity</td>
</tr>
<tr>
<td>Expenditure per capita</td>
<td>• Comparison with other countries</td>
<td>• Health expenditure typically rises with income as people demand more and better services</td>
</tr>
<tr>
<td>Changes in labour market participation, retirement, tax base, superannuation</td>
<td>• Macro-economic indicators of population health and economic participation</td>
<td>• Hard to account for non-health system determinants (e.g. political / regulatory decisions)</td>
</tr>
</tbody>
</table>
4 Drivers of inefficiency in health

This section of the paper is concerned with the drivers of inefficiency in health, as an understanding of these drivers and the types of inefficiencies that arise in health is central to the development of measures of productivity and efficiency that will actually be useful in assisting managers and policy makers to identify and rectify inefficiencies. In brief, there are four main conceptual sources of technical inefficiency namely:

- failing to minimise the physical inputs used;
- failing to use the least cost combination of inputs;
- operating at the wrong point on the short-run average cost curve; and
- operating at the wrong point on the long-run average cost curve.

Table 7 provides a few health examples to help concretise these concepts.

<table>
<thead>
<tr>
<th>Failing to minimise the physical inputs</th>
<th>Failing to use the least cost combination of inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive length of stay, with patients staying in hospital after they have ceased to benefit from hospitalisation</td>
<td>Inappropriate overuse of more expensive staff relative to less expensive staff, e.g. physicians vs. nurses for basic prescribing of essential drugs, nurses vs. nursing assistants for basic personal care, nurses vs. clerical staff for basic administrative duties</td>
</tr>
<tr>
<td>Poor scheduling of diagnostics and procedures, resulting in excessive hospital stay</td>
<td>Use of branded drugs when generics are available</td>
</tr>
<tr>
<td>Prescribing an intervention or diagnostic test which is known to be of no therapeutic value or relevance</td>
<td>Failure to secure lowest cost supply – e.g. buying supplies from retail suppliers rather than competitive bidding</td>
</tr>
<tr>
<td>Over-prescribing of drugs (too high a dosage, too long a course, more substances than required)</td>
<td>Being locked in to purchasing consumables at a set price from a manufacturer for a piece of equipment that has been provided free or on loan</td>
</tr>
<tr>
<td>Excessive use of diagnostic tests (e.g. performing daily tests when they are only interpreted once a week)</td>
<td>Using paramedic-staffed emergency ambulances to transport patients home from hospital</td>
</tr>
<tr>
<td>Wastage of stocks – e.g. allowing stocks to expire, or allowing deterioration due to poor storage etc.</td>
<td></td>
</tr>
<tr>
<td>Over-staffing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wrong point on the short-run average cost curve</th>
<th>Wrong point on the long-run average cost curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing budget cuts that protect salaries at the expense of other expenditure items, hence reducing the number of patients who can be treated, but with no reduction in fixed costs</td>
<td>Planning to provide full pathology laboratory facilities at every hospital when laboratory services actually demonstrate economies of scale</td>
</tr>
<tr>
<td>Refusing to fill a vacant anaesthetist post due to budget constraints, forcing the surgical staff to limit operating time</td>
<td>Planning to build a teaching hospital that is larger than the size at which diseconomies of scale are known to operate in hospitals</td>
</tr>
<tr>
<td>A rural hospital operating at a low bed occupancy due to limited local demand</td>
<td></td>
</tr>
<tr>
<td>Inadequate drug supply leading to under-utilisation of primary care clinics</td>
<td></td>
</tr>
</tbody>
</table>

The concepts of short run and long run concern the extent to which, over time, a production unit can change the level and combination of inputs it employs, and/or the level or type of output it produces. Conventionally, the long run refers to a period that is sufficiently long for a production unit to be completely free in its decisions from its present policies, possessions, or commitments. By contrast, in the short run, at least one significant factor of production cannot be changed—i’t’ fixed, in other words. The practical ability of firms or organizations to shift from a constrained short-run position to a flexible long-run choice of inputs and processes is fundamental to achieving technical and economic efficiency.
Considered relative to those issues, it should, in one sense, be easy for policy makers to design systems that can be efficient and for managers within those systems to drive efficiency. The basic tasks are to: minimise the physical inputs used in the production of each output, controlling for quality; ensure that the least cost combination of inputs is used; operate at the right point on the short-run average cost curve; and operate at the right point on the long-run average cost curve. But the practical difficulties remain considerable and include:

- Are inputs and outputs measured appropriately?
- Are the right incentives in place to ensure managers can achieve efficiencies once identified?

Are inputs and outputs measured appropriately?

We have set out our answer to the first of these questions above. In brief, there is currently no easy way to consistently measure inputs and outputs across the whole of the health system, except through macro-measures such as QALYs (for outcomes) and Health expenditure per capita (for inputs). Nonetheless, this simple measure, controlling for the influence of non-health sector causal factor of health outcomes by ensuring the analysis controls for variables such as age, gender, location and socio-economic status where these variables are proxies for the non-health sector causal factors, can provide a powerful summary measure of productivity across the entire health system. However, given its very aggregative nature, it does not lend itself to ready identification of causal links and hence to relating specific interventions (for instance, in terms of funding levels and allocations) to expected outcomes.

The overall efficiency of Australia’s health system is impacted by health interventions with widely varying levels of cost-effectiveness. Following the McKeon review we categorise health care interventions as either (Figure 9):

- High-Value Interventions, which are typically public health or primary care preventive programs applied at a population level;
- Routine Treatment, which encompasses interventions by clinicians in primary care and acute settings;
- Low-Value Interventions, which may be cost effective but at a lower rate than other interventions;
- Waste, including duplication; and
- Adverse Events, which create further demand for health services.
The approach to improving efficiency/productivity needs to be different in each of these domains. Moreover, it needs to be recognised that potentially contentious issues of distribution will inevitably arise. For example, while a pure efficiency analysis might argue for the allocation of scarce resources to areas of the cost curve in Figure 9 offering the largest marginal improvement, this might clash with equity goals. For example, a pharmaceutical can only be listed on the Commonwealth’s Life Savings Drug Program if it has been accepted by the Pharmaceutical Benefits Advisory Committee as clinically effective, but not recommended for inclusion on the Pharmaceutical Benefits Scheme due to unacceptable cost-effectiveness. In this case, the issue of technical efficiency (within the program) is subordinated to issues of distribution and to judgements about equity of access. This is perhaps unavoidable, and indeed may be desirable, but it must be understood lest system wide measures are inappropriately applied – which leads helpfully to the second question.

Are the right incentives in place?

A useful place to begin to answer this question is to ask why it is that some health care providers (small or large, individuals or corporations) fail to minimize inputs and input costs
or to maximise outputs (outcomes). On the one hand, they may be seeking to minimise costs or maximise outputs, but failing to do so because of institutional constraints or because of a lack of information, which prevent them from identifying efficient input combinations and processes. On the other hand, they may not be seeking to minimise costs or maximise outputs, but rather to satisfy other demands, including behavioural or motivational reasons.

The ways in which an absence of incentives for efficient behaviour or the presence of constraints on decision-makers’ abilities to make efficient choices have been studied can drive organizations in all sectors to either maximize profits or to minimize costs are well understood. Specific examples of problematizing structural incentives and constraints in health care are set out in Table 8.

<table>
<thead>
<tr>
<th>Incentive/constraint</th>
<th>Economic impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public ownership</td>
<td>Managers cannot have a claim on residual profits/savings</td>
</tr>
<tr>
<td>Multiple objectives</td>
<td>Multiple policy objectives require managers to make trade-offs and exercise discretion between efficiency, equity, access, participation and quality</td>
</tr>
<tr>
<td>Payment systems</td>
<td>Fee-for-service and case-based payments provide incentives to providers to increase activity/revenue compared to fixed budgets. Remuneration may not be affected by performance or quality</td>
</tr>
<tr>
<td>Market information</td>
<td>There is often a lack of competitive performance information/signals</td>
</tr>
<tr>
<td>Input indivisibilities</td>
<td>Under-utilization of fixed, indivisible assets</td>
</tr>
<tr>
<td>Demand</td>
<td>Spare rural population; Preferences for inefficient and unnecessary care</td>
</tr>
<tr>
<td>Information systems</td>
<td>Limited data availability on services for decision-makers, little data on prices for lower-level managers</td>
</tr>
</tbody>
</table>

The above should not be seen as a criticism of, for example, ‘public ownership’. Rather our intention is to enumerate the issues that any analysis of, and incentives for, efficiency must take into account. Most importantly, efficiency issues must not be treated as technical and measurement questions but rather as core management objectives. Complex and unpalatable choices must be made if significant efficiency gains are to be realized. Most important, perhaps, efficiency improvement must never be seen as a one-off purging of current inefficiencies. There may well be a powerful case for a specific structural

intervention, but this should never obscure the need to imbue and constantly renew a
culture of continuous efficiency improvement at all levels of the system. Without such a
culture, all that will be achieved is a shift from one position of static productivity to another.
Following the World Health Organisation’s Commission on Macroeconomics and Health52,
the present authors consider that a successful approach to developing an efficiency
improvement program needs to contain the following components:

- identification and quantification of major areas of technical inefficiency;
- identification of key causes of identified inefficiencies;
- assessment of possible interventions to improve efficiency;
- assessment of likely constraints on and barriers to achieving identified efficiencies;
- development of a reinvestment program for the employment of at least some of the
 funds released through efficiency gains;
- implementation of structural changes required to facilitate major or one-off
 improvements, including willingness to invest in such changes; and
- implementation of organizational and cultural shift to continuous productivity
 improvement, including appropriate performance management systems.

52 Hensher, M. (2001). Financing Health Systems through Efficiency Gains. World Health Organisation
5 Conclusion

There is no a priori reason to be concerned with the growth of the health care sector’s share of the economy. Indeed, if the aggregate health benefits of care truly outweigh the total social costs, and that relation remains true at the margin, then there would be a concern if an increasing share of the economy was not devoted to living longer and healthier lives. Nonetheless, there are cogent reasons to be concerned with the efficiency of the health care system notwithstanding (and indeed in part because of) the difficulties inherent in measuring efficiency in health. The authors of the current paper draw four implications for health policy makers from the analysis reported in this paper.

Firstly, in talking to Treasuries, health policy makers have a positive story to tell and should so do, both in respect of the contribution that health investment makes to the economy and in respect of the relative efficiency of Australia’s health care system. To support these discussions there would be value in developing a whole-of-system measure of productivity, noting that current data constraints mean that this measure could only be built at a high level – for example the relationship between the QALYs and health expenditure per capita.

Secondly, there is arguably currently too much emphasis placed on the issue of allocative efficiency. While there can be gains in shifting from less to more valued forms of care even in a system that is technically inefficient, those gains are likely to be small relative to the gains that would come from increasing technical efficiency. In any case, many issues labelled as issues of allocative efficiency are really issues of distribution. That is, they are concerned with society’s judgements about the distribution of care (access and equity), which can involve decisions to invest in interventions that, evaluated without taking distribution into account, are not cost effective.

Thirdly, technical inefficiency is a localised phenomenon and systems are required that support (through measurement), accommodate, encourage and reward (through savings redirection, for example) innovation so that managers can manage. One-size-fits-all measures of efficiency risk concentrating the minds of managers on meeting targets rather than on improving efficiencies. A reliance on such measures may also mean that managers do not have access to the data that they need to identify the localised inefficiencies that characterise the specific environment in which they work. In addition, technical inefficiencies that are imposed on managers (for example, the dead weight burdens of decisions about equity and distribution) need to be identified and quantified so that managers are accountable for that which they can control.

Fourthly and finally, given the importance of dynamic efficiency in driving productivity, measurement systems must not constrain variation so much that change is impossible.
Unfortunately, some 'adverse events' may be necessary if the possibility of dynamism is to be allowed. Put another way, judgements as to whether or not a process is efficient require a priori a specification of the quality of the product to be produced. Failure to produce to the specified quality is not inefficiency but rather ineffectiveness – and some degree of ineffectiveness may be the inevitable cost of experimentation and adjustment. Thus, in developing systems to measure efficiency there would be considerable value in drawing from the well-understood health care performance and quality literature on the differences between measurement for performance management and measurement for quality improvement, which are directly analogous to some of the challenges in measuring productivity and efficiency in health care.
Appendix A: Allocative and social (distributive) efficiency

Does the current health care sector offer the most appropriate mix of services? This is the question of allocative efficiency. An economic sector can be technically efficient but produce goods that people don’t want. Allocative efficiency occurs when goods are distributed according to consumer preferences.53 For example, in Figure 10, marginal cost equals marginal utility at the quantity Q\textsubscript{e}. It is easy to see geometrically that this is the point where the yellow and green areas (which represent the excess of benefit over cost is maximized.)54

In terms of the stylised current production possibility frontier in Figure 7, point C on the frontier represents a health system that is allocatively efficient. Given that allocative efficiency occurs at the output level where Price equals the Marginal Cost of production, it is necessary to express the value of the QALYs obtained in dollar terms. The point on the current production possibility frontier at which allocative efficiency occurs is then the point C, where the slope of the frontier is equal to the inverse of this hurdle rate.55

Economically, point C is preferable to point B as the forgone (non-health) consumption involved in getting from C to B exceeds the value of improved health. Intuitively, all potential treatments are considered, but only options that improve health for less than the hurdle rate per QALY, or that scale back on treatments costing more than the hurdle rate per QALY, are chosen. In the aggregate, health outcomes would improve and costs would likely decline, but some subsets of the population, such as incurable patients, could end up being worse off.56

53 A more precise definition of allocative efficiency is that it occurs at the output level where Price equals the Marginal Cost of production. This is because that is the point where the price that consumers are willing to pay is equivalent to the marginal utility that they get. Therefore the optimal distribution is achieved when the marginal utility of the good equals the marginal cost.

54 The green area in Figure 10 is the Provider Surplus – that is, the excess of the price received for the quantity of goods supplied over the cost of producing that quantity of goods. The yellow area is the Consumer Surplus – that is, the excess of the utility received for the quantity of goods demanded over the cost of purchasing that quantity of goods.

55 If the costs of each unit increase in QALYs are ranged from lowest to highest, at some point the cost exceeds the hurdle rate threshold. At that point, the system has reached the (self-imposed) point of diminishing returns. The slope of the production function becomes too shallow at that point, schematically illustrated as point C in the chart. That’s where additional spending cannot improve allocative efficiency.

56 Assume the health system is located on the production possibility frontier at point D. Now consider two approaches to expanding a new, potentially cost-effective treatment. In the case where only those appropriate for care get it, outcomes and costs improve, to point E, still on the best practice production possibility frontier. But in the case where treatment is extended across all patients, corresponding to point F, outcomes are worse, and costs are higher because the procedure is now done for a wider swath of patients. Extending treatment could even lead to a negative correlation between spending and outcomes, as illustrated by points E and F.
Cost effectiveness analysis is often considered to be concerned with allocative efficiency. However, this point needs to be well understood if it is to be useful. Allocative efficiency can only occur on the production possibilities frontier. That is, technical efficiency is a prerequisite for allocative efficiency. Cost effectiveness is a more localised concept. As a result services that evaluate as being cost effective may not actually be allocatively and technical and economic inefficiencies in health care production have the potential to undermine seriously the apparent gains in allocative efficiency indicated by cost-effectiveness analysis.

In terms of the stylised production possibility frontiers in Figure 7, point G on the new frontier represents a health system that is allocatively efficient. Point C represents a technology that was allocatively efficient under the previous arrangements. A cost effective comparison of Point C to point H (Between the frontiers) would incorrectly favour Point C, even though the overall efficiency of Point H would be greater.

57 The non-market nature of the provision of health services also makes the question of allocative efficiency a difficult question to answer. Because price is externally determined, the price of a health service does not necessarily represent the utility that consumers attach to the service. Different subsidy arrangements (for example, between public and private hospitals, or between hospital care and primary care) further complicate the analysis as the price the consumer is not the true shadow price of the service.

A further complexity is that the concept of allocative efficiency works best for a perfect market. In non-perfect markets managers can have other goals – for example, managers can seek to maximise profits, or revenue, or sales. In seeking each of these outcomes, managers will strive for technical efficiency but not necessarily for allocative efficiency. As Figure 11 illustrates, for a given demand curve, the quantities that a provider will seek to supply depend on their goals:

- profit maximisation occurs at quantity Q_1, where marginal revenue (MR) equals marginal cost (MC);
- revenue maximisation occurs at quantity Q_2, where marginal revenue (MR) equals 0;
- allocative efficiency occurs at quantity Q_3, where Price (P) or Marginal Utility (MU) equals Marginal Cost (MC); and
- sales maximisation (making maximum sales whilst still making normal profits) occurs at quantity Q_4, where Average Revenues (AR) = Average Costs (AC).

![Figure 11: Efficiency and goals](image)

The final concept is social efficiency, which represents the optimal distribution of resources in society, taking into account all external costs and benefits as well as internal costs and benefits. Social Efficiency occurs at an output where Marginal Social Benefit (MSB) = Marginal Social Cost (MSC). This is closely related to the concept of Pareto efficiency – the point where it is impossible to make anyone better off without making someone worse off. It is also closely related to Distributive Efficiency, which is concerned with allocating goods according to those who need them most.