APPENDIX 2: COST EFFECTIVENESS OF SELECTED INTERVENTIONS FOR CHRONIC PAIN

<table>
<thead>
<tr>
<th>Year of study</th>
<th>Intervention</th>
<th>Results (currency/QALY where available)</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Cost effectiveness of physiotherapist-led "patient active" treatments for chronic low back pain (eg simple exercises without special equipment and education) vs. usual outpatient physiotherapy</td>
<td>Cost-saving</td>
<td>Gatchel & Okifuji, 2006</td>
</tr>
<tr>
<td>2006</td>
<td>Cost effectiveness of comprehensive pain programs vs. conventional medical treatment for chronic nonmalignant pain</td>
<td>Cost-saving</td>
<td>Hatten et al, 2006</td>
</tr>
<tr>
<td>2006</td>
<td>Cost-utility of Interdisciplinary chronic spinal pain treatment vs. traditional medications and procedures alone – retrospective case study in the USA</td>
<td>Cost-saving US$627/QALY to $75,885/QALY</td>
<td>Gatchel and Okifuji (2006)</td>
</tr>
<tr>
<td>2002</td>
<td>Comprehensive pain rehabilitation programs (PRPs) (eg multidisciplinary pain treatment) vs. other treatments for chronic pain (eg spinal cord stimulation alone) – literature review</td>
<td>Cost-saving</td>
<td>Gatchel and Okifuji (2006)</td>
</tr>
<tr>
<td>2002</td>
<td>Cost effectiveness of a light multidisciplinary treatment program vs. an extensive multidisciplinary program for patients with chronic low back pain (including outcomes in terms of returning to work after pain) – randomised control trial in Norway</td>
<td>Cost-saving for men only</td>
<td>Haldorsen et al, 2002</td>
</tr>
</tbody>
</table>

Selected Pharmacological Interventions

<table>
<thead>
<tr>
<th>Year of study</th>
<th>Intervention</th>
<th>Results</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Effectiveness of nonnarcotic protocol for the treatment of acute exacerbations of chronic nonmalignant pain vs. narcotic interventions – prospective observational study in the USA</td>
<td>Cost-saving, in terms of hospital utilisation</td>
<td>Svenson & Meyer, 2007</td>
</tr>
<tr>
<td>2007</td>
<td>Cost effectiveness of a vaccine to prevent pain-causing herpes zoster ("shingles") vs. alternative therapy (eg antiviral drugs) in older adults</td>
<td>Dominated for most age groups</td>
<td>Rothberg et al, 2007</td>
</tr>
<tr>
<td>2006</td>
<td>Economic evaluation of oral treatments for neuropathic pain (comparison of amitriptyline, carbamazepine, gabapentin, and tramadol)</td>
<td>Amitriptyline and carbamazepine are more cost effective than tramadol and gabapentin</td>
<td>Cepeda & Farrar, 2006</td>
</tr>
<tr>
<td>2006</td>
<td>Cost effectiveness of various triptans for acute migraine therapy (comparison of almotriptan, eletriptan, naratriptan, rizatriptan, sumatriptan, and zolmitriptan)</td>
<td>Almotriptan 12.5 mg and rizatriptan 10 mg (Maxalt) most cost effective</td>
<td>Kelman et al, 2006</td>
</tr>
</tbody>
</table>

Continued next page
<table>
<thead>
<tr>
<th>Year of study</th>
<th>Intervention</th>
<th>Results (currency/QALY where available)</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Cost effectiveness of spinal cord stimulation (SCS) in complex regional pain syndrome (CRPS) and refractory neuropathic back and leg pain/failed back surgery syndrome (FBSS) vs. alternative therapy (eg physical therapy alone) – RCT and meta-analysis</td>
<td>Cost-saving in the long-run</td>
<td>Taylor, 2006</td>
</tr>
<tr>
<td>2006</td>
<td>Cost effectiveness of spinal cord stimulation (SCS) in the management of patients with complex regional pain syndrome (CRPS) vs. physical therapy alone – RCT in the UK</td>
<td>Cost-saving (US$23,480/QALY)</td>
<td>Taylor et al, 2006</td>
</tr>
<tr>
<td>2004</td>
<td>Other Interventions: Cost-benefit analysis of neurostimulation of the spinal cord and peripheral nerves for chronic pain</td>
<td>Cost-saving in the long-run</td>
<td>Mekhail et al, 2004</td>
</tr>
<tr>
<td>2004</td>
<td>Cost effectiveness of initial lumbar fusion vs. nonsurgical treatment for chronic low back pain - randomised, controlled trial from the Swedish Lumbar Spine Study Group</td>
<td>Cost-saving</td>
<td>Fritzell et al, 2004</td>
</tr>
<tr>
<td>2004</td>
<td>Cost effectiveness of spinal cord stimulation in the treatment of pain vs. other therapy (eg physical therapy alone) – literature review</td>
<td>Cost-saving in the long-run</td>
<td>Taylor et al, 2004</td>
</tr>
<tr>
<td>2002</td>
<td>Cost effectiveness of spinal cord stimulation (SCS), compared with best medical treatment/conventional pain therapy – group of patients with failed back syndrome in Canada</td>
<td>Cost-saving in the long-run despite high initial cost of implantable devices.</td>
<td>Kumar et al, 2002</td>
</tr>
</tbody>
</table>

Note that some studies involved one discipline supported by another (eg. Critchley et al, 2007), while others involved a team approach. Common across studies was training patients in pain self-management strategies.
REFERENCES

The high price of pain

The high price of pain

The high price of pain

multidisciplinary treatment, and extensive multidisciplinary treatment for long-term sick-listed employees with musculoskeletal pain” *Pain*, 95: 49–63.

The high price of pain

