Horizon Scanning Technology
Prioritising Summary

Robotically assisted left ventricular epicardial lead implantation

April 2004
(Updated October 2005)
© Commonwealth of Australia [2004]

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Canberra ACT 2600 or posted at http://www.ag.gov.au/cca

Electronic copies can be obtained from http://www.horizonscanning.gov.au

Enquiries about the content of the report should be directed to:

HealthPACT Secretariat
Department of Health and Ageing
MDP 106
GPO Box 9848
Canberra ACT 2606
AUSTRALIA

DISCLAIMER: This report is based on information available at the time of research and cannot be expected to cover any developments arising from subsequent improvements to health technologies. This report is based on a limited literature search and is not a definitive statement on the safety, effectiveness or cost-effectiveness of the health technology covered.

The Commonwealth does not guarantee the accuracy, currency or completeness of the information in this report. This report is not intended to be used as medical advice and it is not intended to be used to diagnose, treat, cure or prevent any disease, nor should it be used for therapeutic purposes or as a substitute for a health professional’s advice. The Commonwealth does not accept any liability for any injury, loss or damage incurred by use of or reliance on the information.

The production of this Horizon scanning prioritising summary was overseen by the Health Policy Advisory Committee on Technology (HealthPACT), a sub-committee of the Medical Services Advisory Committee (MSAC). HealthPACT comprises representatives from health departments in all states and territories, the Australia and New Zealand governments; MSAC and ASERNIP-S. The Australian Health Ministers’ Advisory Council (AHMAC) supports HealthPACT through funding.

This Horizon scanning prioritising summary was prepared by staff from the Australian safety and Efficacy Register of New Intervenional Procedures – Surgical (ASERNIP-S).
NAME OF TECHNOLOGY:
Robotically assisted left ventricular (LV) epicardial lead implantation for biventricular pacing.

PURPOSE & TARGET GROUP:
This new technique has been designed to be an alternative treatment for heart failure patients who require cardiac resynchronisation therapy (ventricular resynchronisation). It may lower the morbidity and mortality rates for frail patients, by avoiding standard open surgical techniques.

STAGE OF DEVELOPMENT (IN AUSTRALIA):
☐ Experimental
☑ Investigational
☐ Nearly established
☐ Established
☐ Established but changed indication or modification of technique
☐ Should be taken out of use

INTERNATIONAL UTILISATION:

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>LEVEL OF USE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trials underway</td>
</tr>
<tr>
<td>USA</td>
<td>✔️</td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
</tbody>
</table>

IMPACT SUMMARY

Background:
This new minimally invasive technique uses a combined endoscopic and robotically-assisted approach for epicardial left ventricular (LV) lead placement and may offer an alternative to LV lead placement by means of a limited thoracotomy. Operations are performed under general anaesthetic with selective right lung ventilation. Robotic technology allows placement of the lead onto the posterobasal wall of the LV surface (optimum site for successful resynchronisation). Robotic assistance is also reported to improve vision of the ventricular surface, opening of the pericardium and suturing.

Whilst the benefits of biventricular pacing for patients undergoing ventricular resynchronisation has been demonstrated, technical limitations with the implantation of the LV lead through the coronary sinus (CS) and into a LV epicardial vein and variations in the anatomy and location of other veins result in 10% to 15% failure rate of LV lead placement and effective pacing. It is also reported that lead dislodgement can contribute to a further 5% to 10% of LV lead capture failures. The remedy for such cases is to perform surgical LV lead implantation via a limited thoracotomy. This can be
complicated by the debilitated health status of the patients who often have moderate to severe heart failure, resulting in higher morbidity and mortality rates.

Clinical need and burden of disease:
An estimated 300 000 Australians have chronic heart failure with 30 000 new cases diagnosed each year. Aboriginal and Torres Strait Islander people are two to three times more likely to have heart failure than other Australians. Approximately 30% to 50% of patients with chronic heart failure have interventricular conduction defects causing uncoordinated contractions of the heart. This can be detrimental to an already failing heart, leading to an increased risk of death.

Heart failure patients account for 38% of health care expenditure in Australia; the direct health costs for heart failure in 1993-1994 were estimated at A$411 million; this accounts for approximately 10% of the total expenditure in cardiovascular disease. An ageing population, improved survival rate from heart attacks, increase in diabetes and obesity may all increase the number of heart failure patients in the future.

Estimated speed, geographic and practitioner use patterns of diffusion in the health system:
This technique was developed in the United States by DeRose Jr. and other American surgeons; results for 10 patients undergoing this procedure were published in April 2003. Modifications of this procedure (using robotic assistance for LV lead implantation) have been used by other surgeons in Germany and Belgium.

Existing comparators:
- placement of the epicardial lead on the LV epicardium through a thoracotomy (or sternotomy)
- percutaneous implantation through insertion of a purpose-designed lead in a left lateral coronary vein through the CS ostium under fluoroscopic control.

Estimated cost impact:
Exact costs for this procedure are not available. Specific costs of robotic instruments per procedure have been estimated at approximately €600-700 (approx. A$1000; January 2004). These costs do not include capital costs of the da Vinci system (a Melbourne hospital has recently invested A$3 million in this system). Cost savings may occur through procedural success rate, reducing treatment time and by avoiding costs associated with failure or complications.

Efficacy and safety issues:
Short-term safety and efficacy data exist from five case series and two case reports.

<table>
<thead>
<tr>
<th>Study details</th>
<th>Key efficacy findings</th>
<th>Key safety findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeRose et al. 2003, USA</td>
<td>All 19 epicardial leads successfully</td>
<td>1/10 (10%) patient sustained an</td>
</tr>
</tbody>
</table>
implanted in 10 patients (1 patient received only 1 lead).

Follow up: from 3-6 mo

Selection criteria:
Patients with previous failure of CS cannulation.

Patients aged between 70.5±13 yr (range 49-87 yr)
8/10 (80%) male

Three patients (3/10; 30%) had previous cardiac surgery and seven (7/10; 70%) had a prior device implanted.

Other:
Used a posterolateral approach.

Mean robotic time for all cases was 8±53 min (range 30-180 min).

No blood transfusions required.

No reoperations for bleeding reported.

All patients (10/10; 100%) were alive and well at a mean follow-up of 25±10 weeks.

8/10 (80%) of patients were symptomatically improved at three month follow-up with improved exercise tolerance.

As a group, a statistically significant improvement was noted in QRS duration (p=0.006), NYHA class (p=<0.001) and LVEF (p=0.04).

1/10 (10%) patient developed a left lower lobe pneumonia 3 days after robotic lead placement.

Mean duration of the procedure was 2.3 h (2 pacemakers and 1 pace/defibrillator).

Procedural duration for the LV lead implantation was 40 min.

Technical difficulties were encountered (details not specified); it was suggested that tailor-made robotic tools and leads would considerably facilitate the procedure.

At follow-up all devices were functioning well. Chronic pacing and sensing thresholds of the LV leads were satisfactory.

2/3 (67%) patients reported improved functional capacity.

AICD - Automated implantable cardioverter-defibrillator, QRS (complex) - the series of deflections in an electrocardiogram that represent ventricular activity of the heart, NYHA - New York Health Association class, LVEF - left ventricular ejection fraction.
<table>
<thead>
<tr>
<th>Study details</th>
<th>Key efficacy findings</th>
<th>Key safety findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jansen et al. 2003, Belgium<sup>a</sup></td>
<td>Mean duration of procedure was 2.5 h (10 pacemakers and 10 AICD).</td>
<td>3/20 (15%) patients were converted into a small left thoracotomy, all for reasons unrelated to the robotic procedure (further detail not reported).</td>
</tr>
<tr>
<td>20 patients</td>
<td>Mean procedural duration for LV lead implantation was 20 min.</td>
<td></td>
</tr>
<tr>
<td>Follow-up: mean 8 mo</td>
<td>At follow-up all the devices were functioning well.</td>
<td>No major complications were reported in the early follow-up period (duration not stated).</td>
</tr>
<tr>
<td>Selection criteria: Not stated.</td>
<td>All patients (20/20; 100%) reported improvement in their functional capacity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/20 (15%) patients were converted into a small left thoracotomy, all for reasons unrelated to the robotic procedure (further detail not reported).</td>
<td></td>
</tr>
<tr>
<td>Jansens et al. 2003, Belgium<sup>b</sup></td>
<td>Mean duration of procedure was 2.5±0.8 h. The robotic endoscopic duration was 17.5±5.7 min.</td>
<td>2/15 (13%) underwent conversion to a small thoracotomy and experienced pulmonary infections that were treated with intravenous antibiotic therapy.</td>
</tr>
<tr>
<td>15 patients</td>
<td>Average length of stay was 4.6±2.1 d.</td>
<td>Postoperative course uneventful in the remaining patients 13/15 (87%).</td>
</tr>
<tr>
<td>Follow-up: 3, 6 and 12 mo</td>
<td>The 2 patients (2/15; 13%) who underwent a conversion, showed improvement 4 months postoperatively (p=<0.01).</td>
<td></td>
</tr>
<tr>
<td>Selection criteria: Patients with chronic heart failure. NYHA class III or IV with a wide QRS complex.</td>
<td>11 males and 4 females with a mean age of 71.2±5.8 y. 10/15 (66.7%) had pacemakers and 5/15 (33.3%) had an indication for pacemakers including an AICD.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mair et al. 2003, (3 country study)<sup>c</sup></td>
<td>Acute and 3 month LV lead thresholds were satisfactory in 79/80 (99%) patients.</td>
<td>3/80 (4%) patients died in hospital from the progression of end-stage heart failure (the surgical technique used in these patients was not reported).</td>
</tr>
<tr>
<td>80 patients</td>
<td>Intended lead location on the LV was achieved in all patients (80/80; 100%), independent of the technique used.</td>
<td>3/80 (4%) patients underwent conversion to a thoracotomy due to massive pleural adhesions.</td>
</tr>
<tr>
<td>Follow-up: Not stated.</td>
<td>Two lead displacements were observed.</td>
<td>No severe adverse events were reported with any technique.</td>
</tr>
<tr>
<td>Selection criteria: Patients with advanced heart failure and left bundle branch block.</td>
<td>One thoracotomy (1/80; 1%) was carried out after lead placement because the patient developed an early exit block.</td>
<td></td>
</tr>
<tr>
<td>Other: Epicardial LV leads for biventricular pacing were implanted by either: left lateral mini-thoracotomy, video-assisted thoracoscopic approach using lead implantation tools or a robotically enhanced telemanipulation system.</td>
<td>Five patients who underwent robotic surgery needed a conversion to thoracotomy: 2/5 (40%) due to technical failure of the robot, 3/5 (60%) due to massive pleural adhesions.</td>
<td></td>
</tr>
<tr>
<td>Continued...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Report

Kleine et al. 2002, Germany

One 69-year-old female patient with dilated cardiomyopathy and suspected ventricular tachycardias.

Follow up:
Not stated.

Other:
This was an anterolateral approach.

QRS complex width was reduced from 250 ms to 170 ms.
The patient was extubated 3 h postoperatively.
Low inotropic support was needed following carbon-dioxide inflation.
No bleeding or other adverse events reported.
Stable positioning of epicardial leads was reported.
No complications were reported postoperatively.

Morgan et al. 2003, USA

One 51-year-old female patient with chronic heart failure. Recent loss of LV pacing due to CS lead displacement, with failed attempt at replacement/revision of her pacemaker system.

Follow up:
Not stated.

Successful lead placement was reported.
Cardiac resynchronisation was re-established.
No complications or adverse events reported.

AICD - Automated implantable cardioverter-defibrillator, QRS (complex) - the series of deflections in an electrocardiogram that represent ventricular activity of the heart, NYHA - New York Health Association class, LVEF - left ventricular ejection fraction.

There is a small evidence base for the safety and efficacy of robotically assisted LV epicardial lead implantation for biventricular pacing as an alternative to traditional open surgical procedures. However, the studies that do exist have indicated that this technique may be effective at reducing morbidity and mortality rates and recovery time.

2005 update

A search of relevant databases, online journals and the internet was conducted in October 2005, following the recommendation in April 2004 that robotically assisted left ventricular epicardial lead implantation be monitored for assessment in 18 months time. No new evidence on the safety and efficacy of this technique was retrieved.

Hence, based on the limited evidence to date it is recommended that this procedure be archived.

Ethical issues:
Not applicable.

Cultural or religious considerations:
Not applicable.
Other issues:
Robotic LV lead placement does have the possible disadvantage of requiring general anaesthetic and selective single-lung ventilation compared to standard open surgical techniques.1

Conclusion:
Some evidence exists on the safety and efficacy of this procedure as an alternative treatment for LV epicardial lead implantation. Short and long-term efficacy data of controlled trials would be required before robotically assisted left ventricular (LV) epicardial lead implantation for biventricular pacing could be widely accepted.

2005 Update: This procedure will be monitored for a further 12 months as it has potentially high impact on current practice.

REFERENCES:
5. Heart failure… what of the future?

SOURCES OF FURTHER INFORMATION:

SEARCH CRITERIA:
A search of MEDLINE, PubMed and Cochrane Library, Current Controlled Trials metaRegister, UK National Research Register International, Network for Agencies for Health Technology Assessments, relevant online journals and the Internet was conducted in December 2003.

Search terms used were: robotically assisted left ventricular epicardial lead implantation for biventricular pacing, biventricular pacing, epicardial lead implantation and robot$ assisted surgery.